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Natural labelling schemes for simple roots and irreducible 
representations of exceptional Lie algebras 
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t Department of Mathematics, University of Auckland, New Zealand 
$ Department of Physics and Mathematics, College of Education, University of Basrah, 
Basrah, Iraq 

Received 3 January 1980 

Abstract. The simple root system of each exceptional, simple Lie algebra is explicitly 
constructed in a variety of forms. Each construction is based on the natural embedding in 
the exceptional algebra of a classical, semi-simple algebra of the same rank. The procedure 
adopted leads to the discovery of a number of new chains of subalgebras illustrated by 
means of supplemented Dynkin diagrams. The various sets of simple roots are then used to 
determine natural labels for the irreducible representations of each of the exceptional 
algebras. For each such labelling scheme the modification rules for dealing with non- 
standard representation labels are tabulated. The connection between the natural labels 
and Dynkin labels is given in detail and a comparison is made with the labels of Wybourne 
and Bowick. 

1. Introduction 

The classification of complex semi-simple Lie algebras was completed by Cartan 
(1894). The classification involves the four sequences of simple Lie algebras Ak, Bk, c k  

and Dk associated with the classical Lie groups SU(k + l), SO(2k + 1), Sp(2k) and 
SO(2k) respectively, and the five exceptional Lie algebras G1, F4, E6, E, and E8 
associated with exceptional Lie groups denoted, here as elsewhere, by the same symbols 
as used for the algebras. In each case the subscript is a positive integer specifying the 
rank of the algebra. 

Dynkin (1962, p 432) introduced the idea of simple roots in order to improve the 
procedure for deriving Cartan’s classification scheme. The simple roots serve not only 
to label, through Dynkin diagrams, each complex semi-simple Lie algebra, but also 
when combined with a set of non-negative integers, one for each simple root, to label 
each irreducible representation of the Lie algebra and the associated Lie group. Such a 
label was defined by Dynkin (1957b, p 329) in terms of the highest weight of the 
irreducible representation which also serves to label that representation. 

An alternative labelling scheme has been developed for the irreducible represen- 
tations of the classical groups. This followed the pioneer work of Murnaghan (1938, 
1958), Weyl (1939) and Littlewood (1940) and is well summarised by Wybourne 
(1970). Similarly related work by many authors on the irreducible representations of 
the exceptional Lie groups has culminated in the definitive study by Wybourne and 
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16 R C King and A H A  Al-Qubanchi 

Bowick (1977), who provided labelling schemes for the irreducible representations of 
each of the exceptional Lie groups. 

What is of concern here is the relationship between the labelling schemes of Dynkin 
and the rather more natural schemes emphasising such things as the tensor and spinor 
properties of the irreducible representations of the classical groups and the nature of 
embedding of the classical groups in the exceptional groups. This latter aspect of the 
labelling scheme is quite crucial, as is made clear by both Dynkin (1957b, p 3 5 2 )  and 
Wybourne and Bowick (1977). In the present paper a systematic construction of 
natural labelling schemes is carried out. 

In the following section the simple root system of each classical simple Lie algebra is 
given and a straightforward way of establishing the simple roots of each of the 
exceptional algebras is described. These simple roots are expressed in terms of vectors 
in a Euclidean space chosen so as to emphasise in each case some particular classical 
subalgebra. 

These results are discussed in 5 3 and extended with a view to making the 
significance of certain freedoms of choice apparent and to proving the existence of some 
previously overlooked chains of embeddings. 

The application to labelling irreducible representations of the semi-simple Lie 
algebras is given in 5 4. Tables are presented giving the precise link between Dynkin 
labels and natural labels analogous to the links given by Wybourne (1974, p 130) and 
Wybourne and Bowick (1977). Further to this the corresponding modification rules 
appropriate to non-standard, inadmissible natural labels are tabulated. These results 
generalise that of Littlewood (1940, p 98) for S-functions which are characters of the 
unitary groups. They are given in precisely that form which makes them of use in 
evaluating Kronecker products of irreducible representations by the method due to 
Racah (1964) and Speiser (1964). 

2. Simple root systems 

A complex semi-simple Lie algebra g, of rank k and dimension n, may be decomposed 
into a direct sum of subspaces: one consisting of the Cartan subalgebra of dimension k 
spanned by a set of mutually commuting generators of the corresponding real semi- 
simple Lie group, G, and the other spanned by the non-degenerate eigenvectors, in g, of 
these generators. The corresponding eigenvalues determine the set of roots, C,, of the 
Lie algebra g. Each root in C, is indexed by a label CY = *l, 12 ,  . . . . , *(n  - k)/2,  and is 
a vector in a k-dimensional root space V. 

The root space V may conveniently be treated as a subspace, not necessarily proper, 
of a Euclidean space W of dimension d with d 3 k. This space possesses the usual 
Kronecker metric Sij  with i, j = 1 , 2 , .  . . , d. The basis vectors of W are mutually 
orthogonal unit vectors ei with i = 1 , 2 , .  . . , d. These are defihed so that the jth 
component of ei is given by (ei j j  = Sij. In this space W, the root vector indexed by CY is 
denoted by r ( a )  and has componenets r i (a)  = ei.  CY). The orthogonal complement, 
V I ,  of V in W is spanned by a set, r,, of (d  - k) vectors p which are such that 

p .  r ( a )  = 0 (2.1) 

for all roots  CY j .  
An ordering of vectors in V may be introduced by means of an ordering in W 

defined in such a way that U is higher than w, signified by ZI > w, if and only if the first 
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non-vanishing component of U - w is positive. A root vector r = r ( a )  is said to be 
positive if r > 0 where all the components of 0 are zero. 

Dynkin (1962, p 432) defined a root to be simple if it is positive and cannot be 
decomposed into the sum of two positive roots. The number of simple roots of a 
complex semi-simple Lie algebra g, of rank k,  is precisely k,  and Dynkin showed further 
(Dynkin 1962, p 461) that the system of simple roots, rig, of the algebra g defines that 
algebra up to isomorphism. Thus the classification of complex semi-simple Lie algebras 
is effected by enumerating all possible systems of simple roots. The results are 
conveniently summarised by means of the Dynkin diagrams of table 1, each of which 
labels unambiguously a complex simple Lie algebra g from which a unique compact real 
Lie group may be obtained by exponentiation. The standard notation due to Dynkin 
(1957b, p 365) adopted here is such that simple roots are represented by circles. Angles 
between simple roots of values ~ / 2 , 2 ~ / 3 , 3 ~ / 4  and 5 ~ / 6  are indicated by connecting 
the roots by 0, 1, 2 and 3 lines respectively. In the case of a simple Lie algebra, the 
corresponding simple roots are of at most two distinct lengths. If two distinct lengths do 
occur, the circles corresponding to simple roots of least length are filled whilst the others 
are left unfilled. 

Table 1. 

Lie group G Lie algebra g Dynkin diagram Extended Dynkin diagram 

SU(k + 1) A k  

S 0 ( 2 k + l )  Bk 

Sp(2k) ck 

SO (2 k )  Dk 

E7 E7 + 
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The key to the labelling of the irreducible representations both of the Lie algebra, g, 
and the corresponding Lie group, G, lies in the choice of W, along with its dimension d, 
and the precise specification of the simple roots with respect to the basis vectors e, of W 
For the classical Lie algebras Ak, Bk, Ck and Dk, labelling schemes are well established, 
based on spaces of dimension k + 1, k,  k and k respectively. The corresponding simple 
roots are given in table 2 along with, in the case of Ak, the single vector p spanning the 
complementary space V I .  

In the case of the exceptional Lie algebras, no such consensus of opinion regarding 
the specification of the simple roots has emerged. Thus the tabulations of Dynkin 
(1957b, p 3781, Bourbaki (1968, p 2021, Carter (1972, p46),  Gruber and Samuel (1975, 
p 105) and Wan (1975, p 99) are all different. This is due in part to a variation in choice 
of W and of its dimensions d, and in part to the use of alternative ordering relations in 
V. Thus in some schemes it is by no means obvious that each simple root given is 
positive. One advantage of the lexicographic ordering in W used throughout this paper 
is that it is trivial to determine whether or not a particular root is positive or negative. 
However, the main point of distinction between rival labelling schemes concerns the 
choice of W and d. 

As pointed out by Dynkin (1957b, p 353) and stressed by Wybourne and Bowick 
(1977), in dealing with an exceptional simple Lie algebra g of rank k,  it is convenient to 
make use of certain maximal embeddings in g of a classical semi-simple Lie algebra h of 
the same rank k .  The relevant embeddings may be referred to as natural. They are 
necessarily regular in the sense defined by Dynkin (1957a, p 142) and may be obtained 
from those listed in his table 12. To be precise, the natural embeddings of a classical 
semi-simple Lie algebra h in an exceptional simple Lie algebra g are those that satisfy 
three criteria: firstly, the Cartan subalgebras of g and h are of the same dimension, with 
the Cartan subalgebra of h a subalgebra of the Cartan subalgebra of g;  secondly, the 
root vectors r of h are root vectors of g as they stand, without any change of basis or 
change of scale in the corresponding space W containing the root spaces of both g and 
h ; thirdly, the embedding is classically maximal in the sense that there exists no classical 
semi-simple Lie algebra h" such that g 3 h" 3 h with h" not isomorphic to h. 

The required natural embeddings may be found by the following the prescription, 
described by Dynkin (1957a, p 145), based on the extension of the simple root system 
IIg by the adjunction of the lowest root of g, which is necessarily negative, to give an 
extended Dynkin diagram. These are exhibited in table 1. The prescription involves 
the deletion of one of the simple roots of the original Dynkin diagram from the 
extended diagram. The resulting diagram is the Dynkin diagram of a regular semi- 
simple subalgebra of g. The results obtained in this way are displayed in Dynkin's table 
12. Of these embeddings in the simple exceptional Lie algebras, the following involve a 
change of scale at variance with the second criterion mentioned above: 

G2 2 A1 -!-Ai, (2.2) 

Fq I> A2 4 A2, (2.3) 

Fq 3 Ai -L A3. (2.4) 

The third criterion of classical maximality is such that consideration has to be given to 
repeating Dynkin's procedure until a solely classical semi-simple Lie algebra is reached. 

Contrary to the claim made by Dynkin, not all the embeddings listed in his table 12 
are maximal, since the possibility of embedding one regular subalgebra listed in another 
listed regular subalgebra seems to have been overlooked. This matter is taken up in the 
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Table 2. 

~ ~ ~~~ 

Complementary Simple root 
Group G Algebra g system p E T x  system of g : r E n, 

SU(k + 1) 

SO(2k + 1 )  

SO(2k) 

Ak 

B k  

c k  

D k  

e ,  + e 2 + .  . . + e k +  I I 

e l - - e 2  

e 2 - e 3  

e l - e z  

e 2 - e 3  
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next section. It suffices to say at this stage that the complete list of natural embeddings 
of a classical semi-simple Lie algebra h in an exceptional simple Lie algebra g is given in 
table 3. 

The root systems corresponding to these embeddings may be established immedi- 
ately, by making use of the branching rules for the adjoint or regular representations of 
g into irreducible representations of h. These may be found, for example, in the work of 
Patera and Sankoff (1972) and of Wybourne and Bowick (1977). The relevant results 

Table 3. 

Exceptional 
algebra g 

Classical Branching of 
subalgebra h regular representation of g h-dominant roots of g 

101 
2 !  1 
3 3 3  
~ 1 1 2  ~~ . 

- -  

3 3 3  

1100 1000 
~ ~ _ _  1 1 1 1  
2 2 2 2  

2 : 000 
1:111 1 : l O O  
o :2oo  0 : l l O  

i i  : oooooo 
l i  1 1  LTii 
I s : z 2 2  2 2 2 

0 0 :  iooooi 
lo!: ooc: oo_o_ 
2 1 ! . ~ L Z . Z ! . 1  
3 3 3 . 3 3 3 . 3 3 3  

~ 1 I 5 2ii,~12 

000 : 101 : 000 
ooo:ooo:  101 

iooooooi 
1 1 L I I i i i  

1 i : oooooo 
I Z , l L L L l i  

00 : 110000 

3 3 3 . 3 3 3 . 3 3 3  

I 2 2 2 2 2 2 2  

2 2 . 2 2 2 2 2 2  

1 Ill : 00OOOp_ 
2 ? ! . ! 1 ? 1 2 2  
3 3 3 ' 3 3 3 3 2 2  
112.221! L! 
3 3 3 . 3 3 3  3 3 3 

000: iooooi 
1 -  qoo_o_o_oo~ 

~~~ 2 2 2 1  I I I I !  
3 3 3 3 3 3  2 3 3  
~ ~ _ ~ _ ~ ~ _ ~  I I I !  1 1  2 2 2  
3 3 3 3 3 3 3 3 3  

11000000 
_ _ _ ~ ~ ~ _ ~  1 1  1 1  1 1  1 I' 
2 2 2 2 2 2 2 2  

iooooooi : 00 
3 3 i i i i i T . 1 I  
4 5 4 4 4 4 4 4 . 2 2  
_ _ ~ ~  ! 1 1 ! 1 1 1 l  
2 2 2 2 2 2 22.00 
~ 1 1  ~~ 1 1  ~ ! ! ~~ 3 3 . 1 1  ~ 

oooooooo : 1 i 
4 4 4 4 4 4 4 4 . 2 2  
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Table 3.-continued 

Exceptional Classical Branching of 
algebra g subalgebra h regular representation of g h-dominant roots of g 

E8 

10001 : 00000 
5iiii.22zz3 
5 5 5 2 5 . 5  5 5 5 5  
_ _  3 3 2 2 2.11 1- 1% 
5 5 5 5 5 . 5  5 5 5 5 
_ _ _ .  2 2 2 5 3  4 i i i T  
5 5 5 5 5 . 5 5 5 ~ ~  
1 1 1 1 4  3 3 2 2 2  
5 5 5  5 5 . 5  5 5  5 5 

ooooo : ioooi  

000000 : 101 : 00 
oooooo ooo : i i  

i o i  : 000 : 000 : 000 

are displayed in table 3 in a notation which will be explained fully in D 4. The complete 
root system C, is then given by the non-zero weights of the irreducible representations 
of the classical Lie algebras which appear in these branchings. These may be obtained, 
for example, from the work of King and Plunkett (1976). It is important to specify the 
weight vectors of the irreducible representations of the simple constituents hl ,  hZ ,  of the 
classical semi-simple algebra h = hl  4 h z 4 .  . . as vectors in the root spaces VI, Vz, . . . of 
these constituents with components defined with respect to the basis vectors of the 
corresponding Euclidean spaces W1, Wz,  . . . . This has been done for all the non-zero 
weights of the irreducible representations of h, which are dominant, that is to say are 
highest weights of some irreducible representation. These weights, appearing in the 
final column of table 3, are thus the h-dominant roots of the exceptional algebra g ;  the 
remaining roots may be obtained through the action of the Weyl symmetry group 
appropriate to each simple constituent h, of h. This group permutes in all possible ways 
the components of vectors in W,, and in the cases for which h, = Bi or C, also changes the 
signs of these components in all possible ways, whilst if h, = Dj it changes the signs of 
pairs of components in all possible ways. This action generates the complete root 
system C,. 
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The Euclidean space W associated with the root system of g is the direct sum of the 
corresponding spaces W1, W,,.  . . of h l ,  h 2 , .  . . . The dimension d of the space W 
spanned by the vectors e l ,  e 2 , .  . . , f?d is thus the sum of the dimensions d l ,  d2 , .  . . of 
W1, W2, ~ . , . The precise mode of embedding of W1, W2, . . . in W is to some extent 
arbitrary. The method adopted here for the case g 2 h l  4 h2 4. . . results, in general, in 
an alteration of the ordering of the unit vectors implicit in the notation of table 3. It 
involves dealing with each simple algebra in turn, first h l ,  then h2,  etc. The root space of 
each such algebra h of rank j is then embedded in a space spanned by e, ,  e ,+l ,  . . , e,+,-l  
and e,, where i is chosen as small as possible, and m = i + j if h # A, but m is as large as 
possible if h = A,. Each vector p spanning VI is associated with an algebra h = A, and 
takes the form 

p = ei + ei+l + . . . + ei+i-l  +e,.  (2 .5 )  

This particular method of constructing W as the disjoint union of W1, W2, etc has 
certain advantages that become apparent when discussing irreducible representations. 

From the definition of a simple root, it follows that the simple root system, II,, may 
be recovered from the complete root system, E,, merely by eliminating from the set of 
positive roots all those which appear in the set of all possible sums of two such roots. 
However, an easier algorithm presents itself which is based on the fact that the simple 
roots span V. The highest simple root is the lowest root vector with a positive first 
component, the next highest is the lowest root vector with zero first component but 
positive second component, etc. This procedure for extracting the simple roots from 
the set of all roots is completed after precisely k steps in the case of most rank-k Lie 
algebras. The only exceptions are associated with the classical simple algebra Dk. If g is 
Dk itself, then to complete the set of simple roots, IIg, it is necessary to include the root 
e k - l +  e k ,  whilst if g is exceptional and contains D, as a subalgebra for some j ,  it may be 
necessary to complete the set of roots by including the analogue of the ab'ove root, 
namely e,+,-l +e,+ , .  

Applying this technique to the root systems of the exceptional simple Lie algebras, 
g, defined by the weights of the representations of the classical semi-simple natural Lie 
subalgebras h of table 3 ,  yields the simple root systems of g diplayed in table 4 in 
association with the corresponding Dynkin diagrams. 

The simple roots s of g which are not roots, simple or otherwise, of h stand out as 
being those of quite a distinct form. The corresponding roots q of g which are not 
simple roots of g but are simple roots of h are also indicated. They are joined to the 
Dynkin diagram of g by means of broken lines and in this way yield supplemented 
diagrams. These look similar to, but should not be confused with, the extended 
diagrams of Dynkin (1957a, p 145) which were discussed earlier. 

In one case exhibited in table 4 a doubly supplemented diagram appears. A 
comparison of the simple root system of E8 obtained in this case with h = 
A 2 i A 2 i A 2 i A 2 ,  and the simple root system of E6 obtained in the case h = 
A2 4 A2 4 A2 4- A2, shows that this double supplementation owes its origin to the 
existence of the subalgebra chain 

This merely corresponds to the fact that the embedding of A2 4 A2 4 A2 4 A2 in E8 is 
classically maximal, as required here, but not maximal. 
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Table 4. 

Exceptional Classical Complementary Simple roots systems 
algebra g subalgebra h system p E Tr: of g and h : s E U,, q E 11,, 

9 q = e i - e z  e l  + e2 + e ,  Gz A? 

s = ~ ( e l - 2 e 2 + e , )  

1 s = ;(el - e 2 - e 3  - e,) 

s = e ,  - e2 - e3 - e4 

e? - e3 

e 2 + e z + .  . . + e ,  

s = $.(e, - e,--e2 - e,- e,+e5 + e 6 +  e,) e, - eh 

e, - e4 

s = $(e, - 2e, +e,- e3 -e,+2e,- 2e,+ el,+e,) 

e2 --.-a q = e , -  

E,, A ~ ~ A ~ ~ A ~  e , + e 2 + e 9  

e,+e,+e, e,-eu 

e ,+e6+e7 

e s  - eh 

e h - e 7  
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Table 4 --continued 

Exceptional Classical Complementary Simple root systems 
algebra g subalgebra h system p E r8 of g and h : s E np, q E TIh 

s = ;(ei -e2  -e3 -e4 -e5+  e,+e7 + ea) 

e7 - e,- 

E7 A7 eh - e7 
e,+e,+. . .+e, 

e5 - eh 

e4-e5 

e, - e, 

s = ;(ei -e2  -e3 -e4 -e5+  e,+e7 + ea) 

e7 - e,- 

E7 A7 eh - e7 
e,+e,+. . .+e, 

e5 - eh 

e4-e5 

e, - e, 

I I 

q = e , - e ,  

E7 A,+D, ,  e , + e 8  .+ s = i ( e , - e , - e , - e e , - e , - e , - e e , + e 7 )  

E, 

p q = e t - e 2  c e7 - e, eb - e7 

s = ;(e, - 2e,+e,-e,-e,- eS-  e,+2e7+2e,) 

e2-e8 
A2CAs e l+ez+eu  

e3+e,+. . .+eg  



Labels for roots and irreps of Lie algebras 25 

Table 4 --continued 

Exceptional Classical Complementary Simple root systems 
algebra g subalgebra h system p E Tn o f g a n d  h : s E n , q E n h  

Ex 

I 

s = :(e, - 2e,- 2e,-2e4+ e < +  e,+ e, +e ,+  es) I e7 - e, 

eh - e7 

e5 - el, 

e, - e< 

e3 - e, 

e , + e 2 +  . . .+  e9 

e2-e1 

t e7 - e, 

s = $(el - eZ-  e, -e, - e5 -e6 - e, +e,) 
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Table 4-continued 

~~ 

Exceptional Classical Complementary Simple root systems 
algebra g subalgebra h system p E Ts of g and h : s  EII~, q E  n,, 

s = :(e, -4eZ + e ,  + e,+e, , ,  -2e5 -2e,- 2e7 
+ 3e, + 3eJ 

e, - e9 

A , i A ,  e ,  + e 2 + e i  
+e,  + e , , ,  

e5 + e ,  + e7 
+e,+e9 

e7 - e:, 

e,+ e7 + e10 

s = (?(e, - s e 2 +  e, +e,+e,+ e ,  -4e6 + 2e, 
+2e,, ,-3e8+3es) 
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3. Chains of regular embeddings 

There are some apparently surprising omissions from the list of natural embeddings 
given in table 3. This is related to the fact that not all embeddings associated with singly 
supplemented Dynkin diagrams are necessarily maximal. To see this, it is instructive to 
consider what seems a rather innocuous alteration in the work of the previous section: 
namely a reordering of the simple constituents hi ,  h2, . . . of the classical semi-simple 
Lie subalgebra h = ht  4- h2 4.  . . of the exceptional simple Lie algebra g. 

This reordering yields, using once more the weights of the representations of the 
classical subalgebras of table 3, the simple root systems and supplemented Dynkin 
diagrams of table 5 .  

In the case of F4 this alteration does not affect the simple root system at all. 
However, the corresponding supplemented diagram is quite distinct from the original 
one-it is doubly supplemented with the simple roots e l  - e2  and 2e3 of C3. It might 
appear from this diagram that the embedding of C3 4 C1 in F4 may not be maximal. 
However, it is maximal since the algebra C4, which the diagram correctly implies 
contains C3 -i- C1 as a subgroup, is not itself a subgroup of F4. This may easily be verified 
by looking at the complete root system of F4 and the known weights of the adjoint and 
other irreducible representations of C4. 

For E6 nothing unusual emerges, in the sense that the simple root systems obtained 
using EX 3 At 4 A5 and E6 3 A5 4 Al are essentially the same, that is, related to one 
another by a permutation of the basis vectors e,  of W. The same is true for E7. However, 
the simple root system of Ex obtained using E8 3 A1 4- A7 is markedly different from that 
obtained using Es 2 A7 4- At .  Moreover, the corresponding supplemented Dynkin 
diagram is doubly supplemented rather than singly supplemented, even though the 
subalgebra is the same in both cases. What is most significant, however, is that the 
double supplementation necessary to yield the simple root system of A l  $A7  proceeds 
via a supplementation yielding what is clearly the simple root system of A, 4- E7, a 
known subgroup of Ex, followed by another supplementation of the simple root system 
of E7 to give that of A7. Examination of the comlete root system of Ex, as defined by the 
branching rules for the adjoint representation, shows that the embedding of A, 4- A7 in 
EX is not maximal as claimed by Dynkin (1957a, p 150) and Patera and Sankoff (1972). 
The embedding is associated with the subalgebra chain 

Similarly, alterations of the subalgebra A 5 / A 2 i A 1  of E8 to At4-AZ-lA5 and 
A 2 i A 1 4 A s  give the simple root systems of table 5 which show immediately the 
existence of the chains 

(3.3) 

Consideration of another three permutations is obviously possible but rzsults in nothing 
new. 

Now it is perhaps clear why the list of natural embeddings given in table 3 is so short. 
All the remaining embeddings expected are neither maximal nor even classically 
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Table 5. 

Exceptional Classical Lie Complementary 
Lie algebra g suhalgehra h system g E Ts 

Simple root systems of 
gand  H:sEI I ,qEI I , ,  

E6 

E7 

E7 

7 s1=e , -e2- -e3-e4  

p q=e , - e2  

A ~ ~ A ~  e l f e z + .  . . + e 5  e2-e3 
+ e8 

s =;(el - e2 - e3 - e4 + e5 + e8 
- e6 + e7) 

D ~ / A ,  e7 + e8 

A , - C A ~  e l + e 2 +  . . . +  e, e5-e9 

e4 - e, 
+ e9 

s =$(e ,  -2e2-2e,+e4+ e,+ 
eg - e6- e7 + 2e8) 

e7 - e8 

e6- e7 
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Table S-continued 

29 

Exceptional Classical Lie Complementary 
Lie algebra g subalgebra h system p E Ts 

E8 

E8 

A,+A, e1 + C l 0  

e2+e3+. . . + e 9  

A , + A ~ + A ~  e, + e,, 

e10 

e 4 + e 5 + .  . .+e9  

A ~ + A , + A ~  e,  +ez  + e,, 

e l+  e5 + e6+ e, 
+e8+e9 

Simple root systems of 
gand  H : ~ E I I , , ~ E I I , ,  

0 q1=e,-e,o 

s =~(2e , -2e ,o -3e2-3e3+e4  
+ e5 + e6+ e,+ e8+ e9) 

. ... . o (12=e2-e3 t 
s2 = +(e2 - e3 - e4- e5 - e6 

+e,+ e,+ e9) 

s2 =f(ez-2e3+elo-e4-e5-e6  
- e7+ 2e8+ 2e9) 

b q2=e2-e3  

s, = f(2e1 -4ez+2el ,  - 3e3 + 3elo 
-5e4 + e5 + e,+ e, + e u +  e9) 

--a qz=e3-elo 

-1 - 2(e3 - elo- e4- e5 - e6 
+ e, + e8 + e9) 
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maximal. They are associated with the chains 

For completeness, it should be pointed out that the embedding (2.4), discarded already 
on the grounds that it involves a change of scale, is also not maximal in the sense that it is 
associated with the chain 

(3.8) 

These embeddings and those referred to earlier are summarised in table 6. The 

F4 3 Bq 3 Ai -C A3. 

Table 6. Regular subalgebra chains 

w 
r -7  
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corresponding root systems of E.7 and E8 are defined by the weights of the irreducible 
representations of the classical semi-simple subalgebras appearing in the branching of 
the regular representations of E7 and Es. These branching rules are given in table 7, and 
labelling schemes for the systems of simple roots are displayed in table 8.  It is the 
supplemented Dynkin diagrams of this table which make manifest the subalgebra 
chains. Once again it is clear that the ordering of the simple constituents of the classical 
subalgebra h l  4- h z  4 .  . . determine whether or not a doubly supplemented diagram is 
obtained which illustrates the non-maximal nature of the embedding. It should be 
stressed that the existence of such a diagram does not prove the non-maximality. This 
has to be demonstrated by examining the complete root system via the branching rules 
given in tables 3 and 7 and others appearing in the tabulations of Patera and Sankoff 
(1972) and of Wybourne and Bowick (1977). Finally, due credit should be given to 
Wybourne (1979) who was the first to point out and indeed use the existence and 
interconnection between the chains (3.2) and (3.3).  

Table 7, 

Exceptional Classical Branching of 
algebra g subalgebra h regular representation of g h-dominant roots of g 

EX 

EX 

ii : oooo: oooo- 
i i  2 2  3 7 7 1  1 1 1 3  

, 4 4 4 4 , 4 4 4 4  
i t  t i 1 7  3 T i i  ~ 

2 2 , 4 4 4 4 , 6 4 4 4  

00 : i o o i  : oooo 

0 0 :  0000: i o o i  
00: i 1 ii.1LiI 

2 2 2 2 . 2 2 2 2  

ooooo : iooi 

00 : 00 : loel: 0 0 ~ 0 ~  
00: 00 : 11 1 L ,  11 L 1 

00:  oo : 0000 : i oo i  
2 2 2 2 . 2 2 2 2  
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4. Labelling irreducible representations 

Dynkin (1957b, p 329) has demonstrated that each irreducible representation A of a 
semi-simple Lie algebra g and the corresponding Lie group G may be labelled by means 
of a vector a of non-negative integers with components a, associated with each simple 
root r(a) of the algebra. Each such component a,, with cy = 1 ,2 , .  , . , k where k is the 

Table 8. 

Exceptional Classical Complementary 
algebra g subalgebra h system p E Ts 

Simple root systems of 
g a n d h : s E I I g q E l l h  

e3-e10 P E7 A ~ ~ A ~ C A ,  e, +e,+ e3 + e,,, 
q = e , - e ,  

e7 - e8 

s =!(e,-3e2+e3+elo-e4- e5-e6 
+ 3e9 - 2 e7 + 2e8) 

e7 + e8 

e5 - e6 

e4 - e5 

0 41 =e , -e ,o  

E7 A1CA3iA3  e, + e,, s1 = ~ ( 2 e l - 2 e l o - 3 e , + e 3 + e 4  
+e9-  e5 - e6- e7 + 3e8) 

e, - e6 

s2 = +(e2- e3- e.,+ e9- e, - e6 

e5 + e6+ e7+ e8 e6- e7 

+ e7 + e8) 

e3 - e4 

qz=e2-e3 

q = e l - e 2  

s =!(el -3e,+e3+ e,-2e4-2e5 
- 2e6- 2e7 - 2e8) i e7 - e8 

e3 - e9 

E8 A ~ ~ D ,  e l + e 2 + e 3 + e 9  e2--e3 ..-.o 

e6 - e7 
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Table %-continued 

Exceptional Classical Complementary Simple root systems of 
algebra g subalgebra h system p E Tg g and h : s E n g , q E n h  

Ea 

Ea 

Ea 

q l = e l - e z  
I 

D,+A~ e6+ e7 + ea + e9 e2 - e3 

e3-e4 q2 = e4 

s2 = ;(?.e5 - e6- e7 + ea + e9) 

e7 - e8 e6-e7 

e8 - e9 

s1 =+(2e,-2e2-2e3-2e4 -2e,- e6-e7 
- e8 + 3e9) 

4 s2 = ;(e2 - e,, - e3 - e4 - es - e6 - e7 +es) 

e7 - el0 

- (2e6- e, + el0- ea+ e9) 

b s1 =;(e, - ez- e3 - e4- e5- e6- ea+ e9) 
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rank of g, is given by 

where M is the highest weight vector of the irreducible representation A introduced by 
Cartan. By hypothesis, A is irreducible, and Cartan provided that in such a case M is 
unique and non-degenerate and serves to label the irreducible representation. 

It should be stressed that whilst the vector a lies in some k-dimensional space, the 
vectors M and r ( a )  lie in the particular k-dimensional space V which is a subspace of 
the d-dimensional space W introduced in Q 2. The sense in which M is highest is 
precisely that associated with the ordering of vectors in W as defined previously. The 
fact that M lies wholly within V and not in V' is made explicit by the requirement that 

M . p = O  (4.2) 

for all vectors p of v'. 
The equations (4.1) and (4.2) are such that a and M may be obtained from one 

another in a straightforward way using the Euclidean metric of W, the simple roots r of g 
and the complementary vectors p given in tables 2 and 4. 

In order to recover an irreducible representation label, A, more closely related to 
those used very widely for the classical Lie group representations, it is only necessary to 
note that this is accomplished in the case of the algebra Ak by adding -Mk + l  to each 
component of M. This gives a vector A with no more than k non-vanishing 
components. Generalising this procedure: 

(4.3) 

where, in the notation of the previous section: 

~ = e , + e , + ~ + .  . .+e ,+ , - l+e ,  

and 

M,,, = M .  e,,,. 

This definition ensures that the last (d  - k )  components of A are automatically zero by 
virtue of the precise way in which W1, W z r . .  . are embedded in W. 

The first k components of A are either integers or half odd integers thanks to the 
relation, following from (4.1), (4.3) and (2.1), 

which links the components of A to the non-negative integers a,. 
This prescription leads unambiguously to the standard labels {A}, [A] ( A )  and [A] for 

irreducible representations of the classical groups SU(k + l), SO(2k + l ) ,  Sp(2k) and 
SO(2k)  respectively. These have been used by Murnaghan (1938,1958), Weyi (1939), 
Littlewood (1940), Wybourne (1970), and many others. The connection between these 
natural labels and the Dynkin labels is spelled out in table 9. 

Given the simple root systems of tables 4, 5 and 8, the relation (3.4) and its inverse 
giving A in terms of a lead to similar natural labels for the irreducible representations of 
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Table 9. 

Relationship between the Dynkin label a and the 
Algebra natural label A 

Half the sum 
of positive 
roots 6 

the exceptional groups. It is at this stage that the advantages of basing the labelling on a 
singly supplemented Dynkin diagram become apparent. Thus, although the labels 
corresponding to table 4 are given in full in table 9, for the sake of simplicity, those 
corresponding to tables 5 and 8 are only included in table 10 if the Dynkin diagram is 
not doubly supplemented. 

The information in tables 9, 10 and 11 regarding the relationship between the 
Dynkin label a and the natural label A has a number of important aspects. Firstly, the 
only constraints on the components of A are those defined by the condition that each 
component of a is a non-negative integer. These conditions ensure that the 
components of A are either integers or half odd integers. Secondly, the natural label for 
each elementary representation A " )  of the simple Lie algebra g may be found by setting 
ai = 1 and ai = 0 for j # i. These elementary representations are thus labelled by the 
columns of the matrix expressing A in terms of a.  

Thirdly, it is known (Dynkin 1975b, p 356) that half the sum of the positive roots of a 
semi-simple Lie algebra of rank k,  denoted by 

R = $  r, (4.5) 
r > O  

is the sum of the highest weights of the k eiementary representations A"' of g. Defining 

(4.6) 
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this implies that 

yielding the results given in the final columns of tables 9, 10 and 11. 
Finally, the tables may be used to write down the modification rules and equivalence 

relations appropriate to the characters of irreducible representations of semi-simple Lie 
groups. They are a consequence of the character formula due to Weyl (1926), which 
may be written in the form 

(4.8) 

where 4 = (d1, d 2 ,  , , . , d d )  is a set of real class parameters, M is the highest weight 
vector of the irreducible representation A of the Lie group G, R is half the sum of the 
positive roots of the corresponding Lie algebra g, S is an element of the Weyl symmetry 
group WG of G and 77s is the parity of S,  that is 77s = +1 or -1 according to whether the 
number of Weyl reflections generating S is even or odd. Associated with each root r of 
the Lie algebra g there exists a Weyl reflection S, in the hyperplane perpendicular to r. 
This reflection takes place in the Euclidean space W, and is defined by 

2(v. r ) r  s, : 0 + v -___ 
( r  ’ r )  

(4.9) 

for any vector v in W. It should be noticed that by virtue of (2.1) each vector p of VI is 
left invariant by such reflections. 

It follows from (4.8) that if 

and 

(4.10) 

(4.11) 

with 

M = S(R + N )  - R ,  (4.12) 

then 

This relationship between the characters of A and p defines an equivalence relation 
between irreducible representations. The rule by which A is obtained from p using 
(4.9)-(4.12) and (2.1) is known as a modification rule. Its use is to provide a means 
whereby a non-standard, inadmissible label p may be replaced by a standard label A 
satisfying the constraints imposed in tables 9, 10 and 11 by the requirement that the 
components of a are all non-negative integers. Such non-standard labels p arise, for 
example, in the evaluation of Kronecker products of irreducible representations in 
accordance with the method of Racah (1964) and Speiser (1964). In such a context 
there always exists some S in WG such that for each non-standard label p a standard 
label A exists, unless 

x”(4) = 0. 
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This condition only arises if there exists a reflection S,  such that 

x”(4) = 7 7 S , X W ( 4 )  = -x”(4).  
The complete set of Weyl reflections, and thus the whole Weyl group, may be 

generated by means of the reflections in the hyperplanes perpendicular to the simple 
roots. It is thus straightforward, using the tables presented earlier, to derive the 
modification rules defined by 

x“4) = 7 7 S , X W ( 4 )  = -x”(4! 
for each simple root r. These rules are displayed in tables 12 and 13 for each of the 
labelling schemes of tables 9 and 10. Similar results may easily be established for the 
schemes of table 11. 

5. Conclusion 

The tables presented here provide a systematic account of the natural labelling schemes 
for both the simple root systems and the irreducible representations of the exceptional 
Lie algebras. These schemes are based on the relationship between these algebras and 
classical semi-simple subalgebras of the same rank. In almost all cases a labelling may 
be chosen which differs from a classical labelling in just one particular. This is 
accomplished through the use of the schemes based on singly supplemented Dynkin 
diagrams. Furthermore, an ordering of basis vectors in the Euclidean space Win  which 
the root and weight spaces are embedded has been chosen so that in the natural 

Table 12. 

B4 W 1  

c(z 
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Table 14. 

Simple root systems of isomorphic Lie algebras 

o e1-e2 e e: 

e, =?(e; +e ; )=  e: +e: 
e, = $(-e', +e;) = -e; + e; 

e ,=e :+e ;  
e, = e; -e; 

o el-e2 
o e3-e4 

e, = $(e; -e: +e; - e&)  
e2 =?(-e; +e; + e; -e:) 

e4 =;(-e', -e; +e; + e & )  
e 3 - Z ( e ; + e ; + e ; + e k )  - 1. 

A3 = D3 

e: = e, - e, = 2 e :  
e; = e, + e, =2e; 

e', = + ( e ,  - e, + e3 - ea) 
e; = + (-el + e, + e3 - e4) 
e; =?(e l+e ,+e3+e , )  
e: =+(-el  - e2+e3+ ea) 

e; = t ( e l+e , - e3 -  e4) 
e; =$(e l  - e,+ e3 - ea) 
e; = ? ( - e ,  + e,+ e3 - e4) 
e: =+(e ,  + e,+ e,+ e4) 

labelling schemes the last (d  - k) components of the irreducible representation label A 
vanish, whilst for the exceptional algebra g only the first component h l  of A differs in its 
range of allowed value from the corresponding labels of the irreducible representations 
of the classical subalgebra h. Moreover, the requirement for a sound labelling scheme, 
emphasised by Wybourne and Bowick (1977), that on restriction from g to h 

(5.1) 

is automatically satisfied. 
Further schemes may be devised if changes of scale are tolerated which would 

violate (5.1) unless scale changes are incorporated into a mew definition of A which 
would replace (4.3). For example, in the case of F4 a natural scheme has been based 

A + A + .  . . . , 
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here on the subalgebra C1-!-C3. No such scheme may be based on the isomorphic 
algebras A l i C 3  or Bl-kC3. This is because the root spaces of AI ,  B1 and C1 are 
distinguished by changes of scale. This is made clear in table 4, along with similar 
distinctions involving the isomorphic pairs of algebras Bz = C b  D2 = A1 4 A1 and 
A3 = D3. The ratio of lengths of simple roots in AI,  B1 and C1 is J2 : 1 : 2 and in B2 and 
C2 is J 2  : 2. However, in the case of the pair D2 and A1 4 Al  and the pair A3 and D3 the 
ratios are 1 : 1, that is, there are no changes of scale involved. Thus in tables 7 and 8 
natural labelling schemes may be devised based on D3 rather than A3, and upon D2 
rather than A1 4 Al. These are not given here, even though they do serve to illustrate 
very clearly the chains (3.4)-(3.7) by virtue of their dependence upon the well known 
embeddings 

D6 2 D34D3, (5.2) 

D8 2 D2 -!- Dg, (5.3) 

D8 3D3  4 D,. (5.4) 

A final word is necessary regarding non-semi-simple subalgebras. The algebras E6 
and E7 both possess maximal non-semi-simple subalgebras as given in table 12a of 
Dynkin (1957a, p 151). They correspond to the embeddings 

E ~ ~ D ~ / D s ,  ( 5 . 5 )  

E7 3 D1 4E6, (5.6) 

where DI is the one-dimensional Lie algebra, neither simple nor semi-simple, of the Lie 
group SO(2) which is isomorphic to U(1). These embeddings provide labelling 
schemes. In the case of E6 the labelling scheme corresponding to (5.5) is 

- 
e , -e ,  e3-e4  e j - e 5  e5-e6  ;(J3e, - e2 -e , - e4 -eeS+eh)  7- e ,  + e,, 

which is not natural by virtue of the presence of the term in ;&el. This situation may be 
improved by embedding the one-dimensional root space, V, of U(1) in a three- 
dimensional space W. This yields the simple root system 

e4 - e, e s - e h  eh-e7 e7 - e, ;(e, + e2  + e, - e4-  e ,  - e,,- e7 + es) 

e7 + e, 

which is essentially that given by Carter (1972, p 49). Although this is associated in an 
obvious way with the embedding ( 5 . 5 ) ,  it should be stressed that it is not quite natural, 
since the natural label for the one and only positive root of D1 is simply e l .  The use of 
(5.6) suffers from the same drawback. 

A final word of warning is necessary regarding the relationship between the results 
presented here and those of Wyborne and Bowick (1977). The natural labels based on 
Gz 2 A2, E6 3 AI 4 As, E7 2 A7 and E8 2 As are not quite those of these authors. The 
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difference lies, in the case of the last two groups, in the fact that the natural labelling is 
based on a lexicographic ordering in W of highest roots and weights. This results in 
labels, A, for representations of E, and E8 which are the contragradient with respect to 
A7 and As of the labels, A, used by Wybourne and Bowick, so that for E7 

A = ( A i ,  A 2 ,  A 3 , .  . . , A7)=(Ai ,  Ai-A7,  A I - A ~ ,  . . . , A I - A ~ ) ,  

whilst for Es 

A = ( h i , h ~ , A 3 , .  . . ,As)=(A, , i l l -As,hl-A7, .  . . ,Al-A2) .  

In the case of E6, the distinction between their label (m1m2m3m4m5 : m )  and the natural 
label, A, is trivial: namely 

A = ( A I A ~ A ~ A ~ A ~ A ~ )  = ( m  mlm2m3m4m5), 

However, for G2 the natural label, A,  is not that introduced first by Racah (1949) and 
used in the form (U,, u2)  with u1 2 u2 3 0 by Wybourne and Bowick. The relationship 
between the labels is 

A = ( A i ,  A 2 1  = (u i  + ~ 2 ,  u2) 

with A 2 2 A 2  2 0.  The use of the natural label, A,  circumvents the statement made by 
Wybourne and Bowick (1977) regarding (5.1) that 'the situation is slightly different for 
G2' .  The important relation (5.1) does apply to the restriction from G2 to A2 if the 
natural labelling scheme is adopted. 
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