Natural labelling schemes for simple roots and irreducible representations of exceptional Lie algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 1415
(http://iopscience.iop.org/0305-4470/14/1/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:36

Please note that terms and conditions apply.

Natural labelling schemes for simple roots and irreducible representations of exceptional Lie algebras

R C King $\dagger \S$ and A H A Al-Qubanchi \ddagger
\dagger Department of Mathematics, University of Auckland, New Zealand \ddagger Department of Physics and Mathematics, College of Education, University of Basrah, Basrah, Iraq

Received 3 January 1980

Abstract

The simple root system of each exceptional, simple Lie algebra is explicitly constructed in a variety of forms. Each construction is based on the natural embedding in the exceptional algebra of a classical, semi-simple algebra of the same rank. The procedure adopted leads to the discovery of a number of new chains of subalgebras illustrated by means of supplemented Dynkin diagrams. The various sets of simple roots are then used to determine natural labels for the irreducible representations of each of the exceptional algebras. For each such labelling scheme the modification rules for dealing with nonstandard representation labels are tabulated. The connection between the natural labels and Dynkin labels is given in detail and a comparison is made with the labels of Wybourne and Bowick.

1. Introduction

The classification of complex semi-simple Lie algebras was completed by Cartan (1894). The classification involves the four sequences of simple Lie algebras $\mathrm{A}_{k}, \mathrm{~B}_{k}, \mathrm{C}_{k}$ and D_{k} associated with the classical Lie groups $\mathrm{SU}(k+1), \mathrm{SO}(2 k+1), \mathrm{Sp}(2 k)$ and $\mathrm{SO}(2 k)$ respectively, and the five exceptional Lie algebras $\mathrm{G}_{2}, \mathrm{~F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}$ and E_{8} associated with exceptional Lie groups denoted, here as elsewhere, by the same symbols as used for the algebras. In each case the subscript is a positive integer specifying the rank of the algebra.

Dynkin (1962, p 432) introduced the idea of simple roots in order to improve the procedure for deriving Cartan's classification scheme. The simple roots serve not only to label, through Dynkin diagrams, each complex semi-simple Lie algebra, but also when combined with a set of non-negative integers, one for each simple root, to label each irreducible representation of the Lie algebra and the associated Lie group. Such a label was defined by Dynkin (1957b, p 329) in terms of the highest weight of the irreducible representation which also serves to label that representation.

An alternative labelling scheme has been developed for the irreducible representations of the classical groups. This followed the pioneer work of Murnaghan (1938, 1958), Weyl (1939) and Littlewood (1940) and is well summarised by Wybourne (1970). Similarly related work by many authors on the irreducible representations of the exceptional Lie groups has culminated in the definitive study by Wybourne and

[^0]Bowick (1977), who provided labelling schemes for the irreducible representations of each of the exceptional Lie groups.

What is of concern here is the relationship between the labelling schemes of Dynkin and the rather more natural schemes emphasising such things as the tensor and spinor properties of the irreducible representations of the classical groups and the nature of embedding of the classical groups in the exceptional groups. This latter aspect of the labelling scheme is quite crucial, as is made clear by both Dynkin (1957b, p 352) and Wybourne and Bowick (1977). In the present paper a systematic construction of natural labelling schemes is carried out.

In the following section the simple root system of each classical simple Lie algebra is given and a straightforward way of establishing the simple roots of each of the exceptional algebras is described. These simple roots are expressed in terms of vectors in a Euclidean space chosen so as to emphasise in each case some particular classical subalgebra.

These results are discussed in $\S 3$ and extended with a view to making the significance of certain freedoms of choice apparent and to proving the existence of some previously overlooked chains of embeddings.

The application to labelling irreducible representations of the semi-simple Lie algebras is given in $\S 4$. Tables are presented giving the precise link between Dynkin labels and natural labels analogous to the links given by Wybourne (1974, p 130) and Wybourne and Bowick (1977). Further to this the corresponding modification rules appropriate to non-standard, inadmissible natural labels are tabulated. These results generalise that of Littlewood (1940, p 98) for S-functions which are characters of the unitary groups. They are given in precisely that form which makes them of use in evaluating Kronecker products of irreducible representations by the method due to Racah (1964) and Speiser (1964).

2. Simple root systems

A complex semi-simple Lie algebra g, of rank k and dimension n, may be decomposed into a direct sum of subspaces: one consisting of the Cartan subalgebra of dimension k spanned by a set of mutually commuting generators of the corresponding real semisimple Lie group, G, and the other spanned by the non-degenerate eigenvectors, in g, of these generators. The corresponding eigenvalues determine the set of roots, Σ_{g}, of the Lie algebra g. Each root in Σ_{g} is indexed by a label $\alpha= \pm 1, \pm 2, \ldots, \pm(n-k) / 2$, and is a vector in a k-dimensional root space V.

The root space V may conveniently be treated as a subspace, not necessarily proper, of a Euclidean space W of dimension d with $d \geqslant k$. This space possesses the usual Kronecker metric $\delta_{i j}$ with $i, j=1,2, \ldots, d$. The basis vectors of W are mutually orthogonal unit vectors \boldsymbol{e}_{i} with $i=1,2, \ldots, d$. These are defined so that the j th component of \boldsymbol{e}_{i} is given by $\left(\boldsymbol{e}_{i}\right)_{j}=\delta_{i j}$. In this space W, the root vector indexed by α is denoted by $\boldsymbol{r}(\alpha)$ and has componenets $r_{i}(\alpha)=\boldsymbol{e}_{i} . \boldsymbol{r}(\alpha)$. The orthogonal complement, V^{\perp}, of V in W is spanned by a set, Γ_{g}, of $(d-k)$ vectors p which are such that

$$
\begin{equation*}
\boldsymbol{p} \cdot \boldsymbol{r}(\alpha)=0 \tag{2.1}
\end{equation*}
$$

for all roots $\boldsymbol{r}(\alpha)$.
An ordering of vectors in V may be introduced by means of an ordering in W defined in such a way that \boldsymbol{v} is higher than \boldsymbol{w}, signified by $\boldsymbol{v}>\boldsymbol{w}$, if and only if the first
non-vanishing component of $\boldsymbol{v}-\boldsymbol{w}$ is positive. A root vector $\boldsymbol{r}=\boldsymbol{r}(\alpha)$ is said to be positive if $\boldsymbol{r}>\mathbf{0}$ where all the components of $\mathbf{0}$ are zero.

Dynkin (1962, p 432) defined a root to be simple if it is positive and cannot be decomposed into the sum of two positive roots. The number of simple roots of a complex semi-simple Lie algebra g, of rank k, is precisely k, and Dynkin showed further (Dynkin 1962, p 461) that the system of simple roots, Π_{g}, of the algebra g defines that algebra up to isomorphism. Thus the classification of complex semi-simple Lie algebras is effected by enumerating all possible systems of simple roots. The results are conveniently summarised by means of the Dynkin diagrams of table 1, each of which labels unambiguously a complex simple Lie algebra g from which a unique compact real Lie group may be obtained by exponentiation. The standard notation due to Dynkin (1957b, p 365) adopted here is such that simple roots are represented by circles. Angles between simple roots of values $\pi / 2,2 \pi / 3,3 \pi / 4$ and $5 \pi / 6$ are indicated by connecting the roots by $0,1,2$ and 3 lines respectively. In the case of a simple Lie algebra, the corresponding simple roots are of at most two distinct lengths. If two distinct lengths do occur, the circles corresponding to simple roots of least length are filled whilst the others are left unfilled.

Table 1.

Lie group G	Lie algebra g	Dynkin diagram	Extended Dynkin diagram

The key to the labelling of the irreducible representations both of the Lie algebra, g, and the corresponding Lie group, G, lies in the choice of W, along with its dimension d, and the precise specification of the simple roots with respect to the basis vectors \boldsymbol{e}_{i} of W. For the classical Lie algebras $\mathrm{A}_{k}, \mathrm{~B}_{k}, \mathrm{C}_{k}$ and D_{k}, labelling schemes are well established, based on spaces of dimension $k+1, k, k$ and k respectively. The corresponding simple roots are given in table 2 along with, in the case of A_{k}, the single vector p spanning the complementary space V^{\perp}.

In the case of the exceptional Lie algebras, no such consensus of opinion regarding the specification of the simple roots has emerged. Thus the tabulations of Dynkin (1957b, p 378), Bourbaki (1968, p 202), Carter (1972, p 46), Gruber and Samuel (1975, p 105) and Wan (1975, p 99) are all different. This is due in part to a variation in choice of W and of its dimensions d, and in part to the use of alternative ordering relations in V. Thus in some schemes it is by no means obvious that each simple root given is positive. One advantage of the lexicographic ordering in W used throughout this paper is that it is trivial to determine whether or not a particular root is positive or negative. However, the main point of distinction between rival labelling schemes concerns the choice of W and d.

As pointed out by Dynkin (1957b, p 353) and stressed by Wybourne and Bowick (1977), in dealing with an exceptional simple Lie algebra g of rank k, it is convenient to make use of certain maximal embeddings in g of a classical semi-simple Lie algebra h of the same rank k. The relevant embeddings may be referred to as natural. They are necessarily regular in the sense defined by Dynkin (1957a, p 142) and may be obtained from those listed in his table 12. To be precise, the natural embeddings of a classical semi-simple Lie algebra h in an exceptional simple Lie algebra g are those that satisfy three criteria: firstly, the Cartan subalgebras of g and h are of the same dimension, with the Cartan subalgebra of h a subalgebra of the Cartan subalgebra of g; secondly, the root vectors r of h are root vectors of g as they stand, without any change of basis or change of scale in the corresponding space W containing the root spaces of both g and h; thirdly, the embedding is classically maximal in the sense that there exists no classical semi-simple Lie algebra h^{*} such that $g \supset h^{*} \supset h$ with h^{*} not isomorphic to h.

The required natural embeddings may be found by the following the prescription, described by Dynkin (1957a, p 145), based on the extension of the simple root system Π_{g} by the adjunction of the lowest root of g, which is necessarily negative, to give an extended Dynkin diagram. These are exhibited in table 1. The prescription involves the deletion of one of the simple roots of the original Dynkin diagram from the extended diagram. The resulting diagram is the Dynkin diagram of a regular semisimple subalgebra of g. The results obtained in this way are displayed in Dynkin's table 12. Of these embeddings in the simple exceptional Lie algebras, the following involve a change of scale at variance with the second criterion mentioned above:

$$
\begin{align*}
& \mathrm{G}_{2} \supset \mathrm{~A}_{1}+\mathrm{A}_{1}, \tag{2.2}\\
& \mathrm{~F}_{4} \supset \mathrm{~A}_{2}+\mathrm{A}_{2}, \tag{2.3}\\
& \mathrm{~F}_{4} \supset \mathrm{~A}_{1}+\mathrm{A}_{3} . \tag{2.4}
\end{align*}
$$

The third criterion of classical maximality is such that consideration has to be given to repeating Dynkin's procedure until a solely classical semi-simple Lie algebra is reached.

Contrary to the claim made by Dynkin, not all the embeddings listed in his table 12 are maximal, since the possibility of embedding one regular subalgebra listed in another listed regular subalgebra seems to have been overlooked. This matter is taken up in the

Table 2.

next section. It suffices to say at this stage that the complete list of natural embeddings of a classical semi-simple Lie algebra h in an exceptional simple Lie algebra g is given in table 3.

The root systems corresponding to these embeddings may be established immediately, by making use of the branching rules for the adjoint or regular representations of g into irreducible representations of h. These may be found, for example, in the work of Patera and Sankoff (1972) and of Wybourne and Bowick (1977). The relevant results

Table 3.

Exceptional algebra g	Classical subalgebra h	Branching of regular representation of g	h-dominant roots of g
G_{2}	A_{2}	$\begin{aligned} (21) \rightarrow & \{21\} \\ & \{1\} \\ & \left\{1^{2}\right\} \end{aligned}$	$\begin{aligned} & 101 \\ & \frac{2}{3} \frac{1}{3} \frac{1}{2} \\ & \frac{1}{3} \frac{3}{2} \frac{1}{3} \end{aligned}$
F_{4}	B_{4}	$\left(1^{2}\right) \rightarrow \underset{\Delta}{\left[1^{2}\right]}$	$\begin{aligned} & 11001000 \\ & \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \end{aligned}$
F_{4}	$\mathrm{C}_{1}+\mathrm{C}_{3}$	$(2) \quad \rightarrow \quad\langle 2\rangle\langle 0\rangle, \begin{aligned} & \langle 1\rangle\left(1^{3}\right\rangle \\ & \langle 0\rangle\langle 2\rangle \end{aligned}$	$\begin{aligned} & 2: 000 \\ & 1: 111 \\ & 1: 100 \\ & 0: 200 \\ & 0: 110 \end{aligned}$
E_{6}	$\mathrm{A}_{1}+\mathrm{A}_{5}$	$\text { (2) } \begin{aligned} \rightarrow & \{2\}\{0\} \\ & \{1\}\left\{1^{3}\right\} \\ & \{0\}\left\{21^{4}\right\} \end{aligned}$	$\begin{aligned} & 1 \overline{1}: 000000 \\ & \frac{1}{2}: \frac{1}{2}: \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ & 00: 10000 \overline{1} \end{aligned}$
E_{6}	$\mathrm{A}_{2}+\mathrm{A}_{2}+\mathrm{A}_{2}$	$\text { (21) } \begin{aligned} \rightarrow & \{21\}\{0\}\{0\} \\ & \{1\}\left\{1^{2}\right\}\{1\} \\ & \left\{1^{2}\right\}\{1\}\left\{1^{2}\right\} \\ & \{0\}\{21\}\{0\} \\ & \{0\}\{0\}\{21\} \end{aligned}$	$1010: 000: 000$ $\frac{2}{3} \frac{1}{3} \frac{1}{3} \cdot \frac{1}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{1}{3}$ $\frac{1}{3} \frac{1}{3} \frac{2}{3}: \frac{2}{3} \frac{1}{3} \frac{1}{3}: \frac{1}{3} \frac{1}{3} \frac{2}{3}$ $000: 101: 000$ $000: 000: 101$
E_{7}	A_{7}	$\begin{aligned} \left(21^{6}\right) \rightarrow & \left\{21^{6}\right\} \\ & \left\{1^{4}\right\} \end{aligned}$	$\begin{aligned} & 1000000 \overline{1} \\ & \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \end{aligned}$
E_{7}	$\mathrm{A}_{1}+\mathrm{D}_{6}$	$\begin{aligned} (2) \rightarrow & \{2\}[0] \\ & \{1\} \Delta_{-} \\ & \{0\}\left[1^{2}\right] \end{aligned}$	$\begin{aligned} & 1 \overline{1}: 000000 \\ & \frac{1}{2} \frac{1}{2}: \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ & 00: 110000 \end{aligned}$
E_{7}	$\mathrm{A}_{2}+\mathrm{A}_{5}$	$\text { (21) } \begin{aligned} \rightarrow & \{21\}\{0\} \\ & \{1\}\left\{1^{4}\right\} \\ & \left\{1^{2}\right\}\left\{1^{2}\right\} \\ & \{0\}\left\{21^{4}\right\} \end{aligned}$	$\begin{aligned} & 10 \overline{1}: 000000 \\ & \frac{2}{3} \frac{1}{3}: \frac{1}{3}: \frac{1}{3} \frac{1}{3} 1 \frac{1}{2}= \\ & \frac{1}{3} \frac{1}{3} \frac{2}{3}: \frac{2}{3} \frac{2}{3} \frac{3}{3} \frac{1}{3} \frac{3}{3} \frac{1}{3} \\ & 000: 100001 \end{aligned}$
E_{8}	A_{8}	$\begin{aligned} \left(21^{7}\right) \rightarrow & \left\{21^{7}\right\} \\ & \left\{1^{3}\right\} \\ & \left\{1^{5}\right\} \end{aligned}$	$\begin{aligned} & 100000001 \\ & \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \\ & \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \frac{2}{3} \end{aligned}$
E_{8}	D_{8}	$\begin{gathered} \left(1^{2}\right) \rightarrow\left[1^{2}\right] \\ \Delta_{+} \end{gathered}$	$\begin{aligned} & 11000000 \\ & \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \end{aligned}$
E_{8}	$\mathrm{A}_{7}+\mathrm{A}_{1}$	$\begin{aligned} \left(21^{6}\right) \rightarrow & \left\{21^{6}\right\}\{0\} \\ & \left\{1^{2}\right\}\{1\} \\ & \left\{1^{4}\right\}\{0\} \\ & \left\{1^{6}\right\}\{1\} \\ & \{0\}\{2\} \end{aligned}$	$1000000 \overline{1}: 00$ $\frac{3}{4} \frac{3}{4} \frac{1}{4} 14 \frac{1}{4} \frac{1}{2}: \frac{1}{2}$ $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}: 00$ $\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{3}{4} \frac{3}{4}: \frac{1}{4} \frac{1}{2}$ $00000000: 1 \overline{1}$

Table 3.-continued

Exceptional algebra g	Classical subalgebra h	Branching of regular representation of g	h-dominant roots of g

are displayed in table 3 in a notation which will be explained fully in $\S 4$. The complete root system Σ_{g} is then given by the non-zero weights of the irreducible representations of the classical Lie algebras which appear in these branchings. These may be obtained, for example, from the work of King and Plunkett (1976). It is important to specify the weight vectors of the irreducible representations of the simple constituents h_{1}, h_{2}, of the classical semi-simple algebra $h=h_{1}+h_{2}+\ldots$ as vectors in the root spaces V_{1}, V_{2}, \ldots of these constituents with components defined with respect to the basis vectors of the corresponding Euclidean spaces W_{1}, W_{2}, \ldots This has been done for all the non-zero weights of the irreducible representations of h, which are dominant, that is to say are highest weights of some irreducible representation. These weights, appearing in the final column of table 3 , are thus the h-dominant roots of the exceptional algebra g; the remaining roots may be obtained through the action of the Weyl symmetry group appropriate to each simple constituent h_{i} of h. This group permutes in all possible ways the components of vectors in W_{i}, and in the cases for which $h_{i}=\mathrm{B}_{j}$ or C_{j} also changes the signs of these components in all possible ways, whilst if $h_{i}=\mathrm{D} j$ it changes the signs of pairs of components in all possible ways. This action generates the complete root system Σ_{g}.

The Euclidean space W associated with the root system of g is the direct sum of the corresponding spaces W_{1}, W_{2}, \ldots of h_{1}, h_{2}, \ldots. The dimension d of the space W spanned by the vectors $e_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{d}$ is thus the sum of the dimensions d_{1}, d_{2}, \ldots of W_{1}, W_{2}, \ldots The precise mode of embedding of W_{1}, W_{2}, \ldots in W is to some extent arbitrary. The method adopted here for the case $g \supset h_{1}+h_{2}+\ldots$ results, in general, in an alteration of the ordering of the unit vectors implicit in the notation of table 3. It involves dealing with each simple algebra in turn, first h_{1}, then h_{2}, etc. The root space of each such algebra h of rank j is then embedded in a space spanned by $\boldsymbol{e}_{i}, \boldsymbol{e}_{i+1}, \ldots, \boldsymbol{e}_{i+j-1}$ and \boldsymbol{e}_{m}, where i is chosen as small as possible, and $m=i+j$ if $h \neq \mathrm{A}_{j}$ but m is as large as possible if $h=\mathrm{A}_{j}$. Each vector \boldsymbol{p} spanning V^{\perp} is associated with an algebra $h=\mathrm{A}_{j}$ and takes the form

$$
\begin{equation*}
\boldsymbol{p}=\boldsymbol{e}_{i}+\boldsymbol{e}_{i+1}+\ldots+\boldsymbol{e}_{i+j-1}+\boldsymbol{e}_{m} \tag{2.5}
\end{equation*}
$$

This particular method of constructing W as the disjoint union of W_{1}, W_{2}, etc has certain advantages that become apparent when discussing irreducible representations.

From the definition of a simple root, it follows that the simple root system, Π_{g}, may be recovered from the complete root system, Σ_{g}, merely by eliminating from the set of positive roots all those which appear in the set of all possible sums of two such roots. However, an easier algorithm presents itself which is based on the fact that the simple roots span V. The highest simple root is the lowest root vector with a positive first component, the next highest is the lowest root vector with zero first component but positive second component, etc. This procedure for extracting the simple roots from the set of all roots is completed after precisely k steps in the case of most rank- k Lie algebras. The only exceptions are associated with the classical simple algebra D_{k}. If g is D_{k} itself, then to complete the set of simple roots, Π_{g}, it is necessary to include the root $\boldsymbol{e}_{k-1}+\boldsymbol{e}_{k}$, whilst if g is exceptional and contains D_{j} as a subalgebra for some j, it may be necessary to complete the set of roots by including the analogue of the above root, namely $\boldsymbol{e}_{i+j-1}+\boldsymbol{e}_{i+j}$.

Applying this technique to the root systems of the exceptional simple Lie algebras, g, defined by the weights of the representations of the classical semi-simple natural Lie subalgebras h of table 3 , yields the simple root systems of g diplayed in table 4 in association with the corresponding Dynkin diagrams.

The simple roots s of g which are not roots, simple or otherwise, of h stand out as being those of quite a distinct form. The corresponding roots q of g which are not simple roots of g but are simple roots of h are also indicated. They are joined to the Dynkin diagram of g by means of broken lines and in this way yield supplemented diagrams. These look similar to, but should not be confused with, the extended diagrams of Dynkin (1957a, p 145) which were discussed earlier.

In one case exhibited in table 4 a doubly supplemented diagram appears. A comparison of the simple root system of E_{8} obtained in this case with $h=$ $A_{2}+A_{2}+A_{2}+A_{2}$, and the simple root system of E_{6} obtained in the case $h=$ $A_{2}+A_{2}+A_{2}+A_{2}$, shows that this double supplementation owes its origin to the existence of the subalgebra chain

$$
\begin{equation*}
\mathrm{E}_{8} \supset \mathrm{~A}_{2}+\mathrm{E}_{6} \supset \mathrm{~A}_{2}+\mathrm{A}_{2}+\mathrm{A}_{2}+\mathrm{A}_{2} . \tag{2.6}
\end{equation*}
$$

This merely corresponds to the fact that the embedding of $A_{2}+A_{2}+A_{2}+A_{2}$ in E_{8} is classically maximal, as required here, but not maximal.

Table 4.

Exceptional	Classical	Complementary	Simple roots systems
algebra g	subalgebra h	system $p \in \Gamma_{k}$	of g and $h: s \in \Pi_{g}, \boldsymbol{q} \in \Pi_{h}$

Table 4 -continued

Exceptional	Classical	Complementary	Simple root systems
algebra g	subalgebra h	system $\boldsymbol{p} \in \Gamma_{g}$	of g and $h: s \in \Pi_{g}, \boldsymbol{q} \in \Pi_{h}$

[^1]Table 4 -continued

Exceptional	Classical	Complementary	Simple root systems
algebra g	subalgebra h	system $\boldsymbol{p} \in \Gamma_{g}$	of g and $h: s \in \Pi_{g}, \boldsymbol{q} \in \Pi_{h}$

E_{8}
$\mathrm{~A}_{7}+\mathrm{A}_{1}$

Table 4-continued

Exceptional	Classical	Complementary	Simple root systems
algebra g	subalgebra h	system $\boldsymbol{p} \in \Gamma_{g}$	of g and $h: s \in \Pi_{g}, \boldsymbol{q} \in \Pi_{h}$

3. Chains of regular embeddings

There are some apparently surprising omissions from the list of natural embeddings given in table 3. This is related to the fact that not all embeddings associated with singly supplemented Dynkin diagrams are necessarily maximal. To see this, it is instructive to consider what seems a rather innocuous alteration in the work of the previous section: namely a reordering of the simple constituents h_{1}, h_{2}, \ldots of the classical semi-simple Lie subalgebra $h=h_{1}+h_{2}+\ldots$ of the exceptional simple Lie algebra g.

This reordering yields, using once more the weights of the representations of the classical subalgebras of table 3, the simple root systems and supplemented Dynkin diagrams of table 5 .

In the case of F_{4} this alteration does not affect the simple root system at all. However, the corresponding supplemented diagram is quite distinct from the original one-it is doubly supplemented with the simple roots $\boldsymbol{e}_{1}-\boldsymbol{e}_{2}$ and $2 \boldsymbol{e}_{3}$ of C_{3}. It might appear from this diagram that the embedding of $\mathrm{C}_{3}+\mathrm{C}_{1}$ in F_{4} may not be maximal. However, it is maximal since the algebra C_{4}, which the diagram correctly implies contains $\mathrm{C}_{3}+\mathrm{C}_{1}$ as a subgroup, is not itself a subgroup of F_{4}. This may easily be verified by looking at the complete root system of F_{4} and the known weights of the adjoint and other irreducible representations of C_{4}.

For E_{6} nothing unusual emerges, in the sense that the simple root systems obtained using $E_{8} \supset A_{1}+A_{5}$ and $E_{6} \supset A_{5}+A_{1}$ are essentially the same, that is, related to one another by a permutation of the basis vectors e_{i} of W. The same is true for E_{7}. However, the simple root system of E_{8} obtained using $E_{8} \sqsupset A_{1}+A_{7}$ is markedly different from that obtained using $E_{8} \supset A_{7}+A_{1}$. Moreover, the corresponding supplemented Dynkin diagram is doubly supplemented rather than singly supplemented, even though the subalgebra is the same in both cases. What is most significant, however, is that the double supplementation necessary to yield the simple root system of $A_{1}+A_{7}$ proceeds via a supplementation yielding what is clearly the simple root system of $A_{1}+E_{7}$, a known subgroup of E_{8}, followed by another supplementation of the simple root system of E_{7} to give that of A_{7}. Examination of the comlete root system of E_{8}, as defined by the branching rules for the adjoint representation, shows that the embedding of $A_{1}+A_{7}$ in E_{8} is not maximal as claimed by Dynkin (1957a, p 150) and Patera and Sankoff (1972). The embedding is associated with the subalgebra chain

$$
\begin{equation*}
\mathrm{E}_{8} \supset \mathrm{~A}_{1}+\mathrm{E}_{7} \supset \mathrm{~A}_{1}+\mathrm{A}_{7} . \tag{3.1}
\end{equation*}
$$

Similarly, aiterations of the subalgebra $\mathrm{A}_{5}+\mathrm{A}_{2} \dot{+} \mathrm{A}_{1}$ of E_{8} to $\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{5}$ and $A_{2}+A_{1}+A_{5}$ give the simple root systems of table 5 which show immediately the existence of the chains

$$
\begin{equation*}
\mathrm{E}_{8} \supset \mathrm{~A}_{1}+\mathrm{E}_{7} \supset \mathrm{~A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{5} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{E}_{8} \supset \mathrm{~A}_{2}+\mathrm{E}_{6} \supset \mathrm{~A}_{2}+\mathrm{A}_{1}+\mathrm{A}_{5} . \tag{3.3}
\end{equation*}
$$

Consideration of another three permutations is obviously possible but results in nothing new.

Now it is perhaps clear why the list of natural embeddings given in table 3 is so short. All the remaining embeddings expected are neither maximal nor even classically

Table 5.

Exceptional Lie algebra g	Classical Lie subalgebra h	Complementary system $p \in \Gamma_{g}$		Simple root systems of g and $H: s \in \Pi_{g}, \boldsymbol{q} \in \Pi_{h}$
F_{4}	$\mathrm{C}_{3}+\mathrm{C}_{1}$	-	$2 \boldsymbol{e}_{4}$	$s_{1}=e_{1}-e_{2}-e_{3}-e_{4}$ $s_{2}=e_{3}-e_{4}$
			$\boldsymbol{e}_{2}-\boldsymbol{e}_{3}$	F:::0 $\quad q_{2}=2 e_{3}$ $\boldsymbol{q}_{1}=\boldsymbol{e}_{1}-\boldsymbol{e}_{2}$

E_{6}

E_{7}
$\mathrm{D}_{6}+\mathrm{A}_{1}$
$e_{7}+e_{8}$

E_{7}

$$
\begin{array}{cc}
\mathrm{A}_{5}+\mathrm{A}_{2} & e_{1}+e_{2}+\ldots+e_{5} \\
& +e_{9}
\end{array}
$$

$$
\begin{aligned}
& \boldsymbol{e}_{5}-\boldsymbol{e}_{9} \\
& \boldsymbol{e}_{4}-\boldsymbol{e}_{5} \\
& \boldsymbol{e}_{3}-\boldsymbol{e}_{4}
\end{aligned}
$$

Table 5-continued

E_{8}

$$
\begin{aligned}
& \mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{5} \quad \boldsymbol{e}_{1}+\boldsymbol{e}_{11}
\end{aligned}
$$

maximal. They are associated with the chains

$$
\begin{align*}
& E_{7} \supset A_{1}+D_{6} \supset A_{1}+A_{3}+A_{3}, \tag{3.4}\\
& E_{8} \supset A_{1}+E_{7} \supset A_{1}+A_{1}+D_{6} \supset A_{1}+A_{1}+A_{3}+A_{3}, \tag{3.5}\\
& E_{8} \supset D_{8} \supset A_{1}+A_{1}+D_{6}, \tag{3.6}\\
& E_{8} \supset D_{8} \supset A_{3}+D_{5} . \tag{3.7}
\end{align*}
$$

For completeness, it should be pointed out that the embedding (2.4), discarded already on the grounds that it involves a change of scale, is also not maximal in the sense that it is associated with the chain

$$
\begin{equation*}
\mathrm{F}_{4} \supset \mathrm{~B}_{4} \supset \mathrm{~A}_{1}+\mathrm{A}_{3} \tag{3.8}
\end{equation*}
$$

These embeddings and those referred to earlier are summarised in table 6. The

Table 6. Regular subalgebra chains.

corresponding root systems of E_{7} and E_{8} are defined by the weights of the irreducible representations of the classical semi-simple subalgebras appearing in the branching of the regular representations of E_{7} and E_{8}. These branching rules are given in table 7, and labelling schemes for the systems of simple roots are displayed in table 8. It is the supplemented Dynkin diagrams of this table which make manifest the subalgebra chains. Once again it is clear that the ordering of the simple constituents of the classical subalgebra $h_{1}+h_{2}+\ldots$ determine whether or not a doubly supplemented diagram is obtained which illustrates the non-maximal nature of the embedding. It should be stressed that the existence of such a diagram does not prove the non-maximality. This has to be demonstrated by examining the complete root system via the branching rules given in tables 3 and 7 and others appearing in the tabulations of Patera and Sankoff (1972) and of Wybourne and Bowick (1977). Finally, due credit should be given to Wybourne (1979) who was the first to point out and indeed use the existence and interconnection between the chains (3.2) and (3.3).

Table 7.

Exceptional algebra g	Classical subalgebra	Branching of regular representation of g	h-dominant roots of g

4. Labelling irreducible representations

Dynkin (1957b, p 329) has demonstrated that each irreducible representation $\boldsymbol{\lambda}$ of a semi-simple Lie algebra g and the corresponding Lie group G may be labelled by means of a vector a of non-negative integers with components a_{α} associated with each simple root $\boldsymbol{r}(\alpha)$ of the algebra. Each such component a_{α}, with $\alpha=1,2, \ldots, k$ where k is the

Table 8.

Table 8-continued

rank of g, is given by

$$
\begin{equation*}
a_{\alpha}=2 \frac{\boldsymbol{M} \cdot \boldsymbol{r}(\alpha)}{\boldsymbol{r}(\alpha) \cdot \boldsymbol{r}(\alpha)} \tag{4.1}
\end{equation*}
$$

where \boldsymbol{M} is the highest weight vector of the irreducible representation $\boldsymbol{\lambda}$ introduced by Cartan. By hypothesis, $\boldsymbol{\lambda}$ is irreducible, and Cartan provided that in such a case \boldsymbol{M} is unique and non-degenerate and serves to label the irreducible representation.

It should be stressed that whilst the vector a lies in some k-dimensional space, the vectors \boldsymbol{M} and $\boldsymbol{r}(\alpha)$ lie in the particular k-dimensional space V which is a subspace of the d-dimensional space W introduced in $\S 2$. The sense in which \boldsymbol{M} is highest is precisely that associated with the ordering of vectors in W as defined previously. The fact that \boldsymbol{M} lies wholly within V and not in V^{\perp} is made explicit by the requirement that

$$
\begin{equation*}
\boldsymbol{M} \cdot \boldsymbol{p}=0 \tag{4.2}
\end{equation*}
$$

for all vectors \boldsymbol{p} of V^{\perp}.
The equations (4.1) and (4.2) are such that \boldsymbol{a} and \boldsymbol{M} may be obtained from one another in a straightforward way using the Euclidean metric of W, the simple roots r of g and the complementary vectors p given in tables 2 and 4.

In order to recover an irreducible representation label, $\boldsymbol{\lambda}$, more closely related to those used very widely for the classical Lie group representations, it is only necessary to note that this is accomplished in the case of the algebra A_{k} by adding $-M_{k+1}$ to each component of \boldsymbol{M}. This gives a vector $\boldsymbol{\lambda}$ with no more than k non-vanishing components. Generalising this procedure:

$$
\begin{equation*}
\lambda=\boldsymbol{M}-\sum_{p \in \Gamma_{8}} M_{m} \boldsymbol{p} \tag{4.3}
\end{equation*}
$$

where, in the notation of the previous section:

$$
p=\boldsymbol{e}_{i}+\boldsymbol{e}_{i+1}+\ldots+\boldsymbol{e}_{i+j-1}+\boldsymbol{e}_{m}
$$

and

$$
M_{m}=\boldsymbol{M} \cdot \boldsymbol{e}_{m} .
$$

This definition ensures that the last $(d-k)$ components of $\boldsymbol{\lambda}$ are automatically zero by virtue of the precise way in which W_{1}, W_{2}, \ldots are embedded in W.

The first k components of $\boldsymbol{\lambda}$ are either integers or half odd integers thanks to the relation, following from (4.1), (4.3) and (2.1),

$$
\begin{equation*}
a_{\alpha}=2 \frac{\boldsymbol{\lambda} \cdot \boldsymbol{r}(\alpha)}{\boldsymbol{r}(\alpha) \cdot \boldsymbol{r}(\alpha)} \tag{4.4}
\end{equation*}
$$

which links the components of $\boldsymbol{\lambda}$ to the non-negative integers a_{α}.
This prescription leads unambiguously to the standard labels $\{\boldsymbol{\lambda}\},[\boldsymbol{\lambda}],\langle\boldsymbol{\lambda}\rangle$ and $[\boldsymbol{\lambda}]$ for irreducible representations of the classical groups $\mathrm{SU}(k+1), \mathrm{SO}(2 k+1), \mathrm{Sp}(2 k)$ and $\mathrm{SO}(2 k)$ respectively. These have been used by Murnaghan (1938, 1958), Weyl (1939), Littlewood (1940), Wybourne (1970), and many others. The connection between these natural labels and the Dynkin labels is spelled out in table 9.

Given the simple root systems of tables 4,5 and 8 , the relation (3.4) and its inverse giving $\boldsymbol{\lambda}$ in terms of \boldsymbol{a} lead to similar natural labels for the irreducible representations of

Table 9.

Algebra	Relationship between the Dynkin label a and the natural label $\boldsymbol{\lambda}$			Half the sum of positive roots δ
A_{k}	$a_{1}=\lambda_{1}-\lambda_{2}$	$\lambda_{1}=a_{1}$	$a_{2}+\ldots+a_{k-1}+a_{k}$	$\delta_{1}=k$
	$a_{2}=\lambda_{2}-\lambda_{3}$	$\lambda_{2}=$	$a_{2}+\ldots+a_{k-1}+a_{k}$	$\delta_{2}=k-1$
	$a_{k-1}=\lambda_{k-1}-\lambda_{k}$	$\lambda_{k-1}=$	$a_{k-1}+a_{k}$	$\delta_{k-1}=2$
	$a_{k}=\lambda_{k}$	$\lambda_{k}=$	a_{k}	$\delta_{k}=1$
B_{k}	$a_{1}=\lambda_{1}-\lambda_{2}$	$\lambda_{1}=a_{1}$	$a_{2}+\ldots+a_{k-1}+\frac{1}{2} a_{k}$	$\delta_{1}=(2 k-1) / 2$
	$a_{2}=\lambda_{2}-\lambda_{3}$	$\lambda_{2}=$	$a_{2}+\ldots+a_{k-1}+\frac{1}{2} a_{k}$	$\delta_{2}=(2 k-3) / 2$
	$a_{k-1}=\lambda_{k-1}-\lambda_{k}$	$\lambda_{k-1}=$	$a_{k-1}+\frac{1}{2} a_{k}$	$\dot{\delta}_{k-1}=\frac{3}{2}$
	$a_{k}=2 \lambda_{k}$	$\lambda_{k}=$	$\frac{1}{2} a_{k}$	$\delta_{k}=\frac{1}{2}$
C_{k}	$a_{1}=\lambda_{1}-\lambda_{2}$	$\lambda_{1}=a_{1}$	$a_{2}+\ldots+a_{k-1}+a_{k}$	$\delta_{1}=k$
	$a_{2}=\lambda_{2}-\lambda_{3}$	$\lambda_{2}=$	$a_{2}+\ldots+a_{k-1}+a_{k}$	$\delta_{2}=k-1$
	$a_{k-1}=\lambda_{k-1}-\lambda_{k}$	$\lambda_{k-1}=$	$a_{k-1}+a_{k}$	$\delta_{k-1}=2$
	$a_{k}=\lambda_{k}$	$\lambda_{k}=$	a_{k}	$\delta_{k}=1$
D_{k}	$a_{1}=\lambda_{1}-\lambda_{2}$	$\lambda_{1}=a_{1}$	$a_{2}+\ldots+a_{k-2}+\frac{1}{2} a_{k-}$	$\delta_{1}=k-1$
	$a_{2}=\lambda_{2}-\lambda_{3}$	$\lambda_{2}=$	$a_{2}+\ldots+a_{k-2}+\frac{1}{2} a_{k-1}$	$\delta_{2}=k-2$
	$a_{k-2}=\lambda_{1-2}-\lambda_{k}$	$\lambda_{k-2}=$		
	$a_{k-2}=\lambda_{k-2}-\lambda_{k-1}$	$\lambda_{k-2}=$	$a_{k-2}+\frac{1}{2} a_{k-1}$	$\delta_{k-2}=2$
	$a_{k-1}=\lambda_{k-1}-\lambda_{k}$	$\lambda_{k-1}=$	$\frac{1}{2} a_{k-}$	$\delta_{k-1}=1$
	$a_{k}=\lambda_{k-1}+\lambda_{k}$	$\lambda_{k}=$	$\frac{1}{2} a_{k-1}$	$\delta_{k}=0$

the exceptional groups. It is at this stage that the advantages of basing the labelling on a singly supplemented Dynkin diagram become apparent. Thus, although the labels corresponding to table 4 are given in full in table 9 , for the sake of simplicity, those corresponding to tables 5 and 8 are only included in table 10 if the Dynkin diagram is not doubly supplemented.

The information in tables 9, 10 and 11 regarding the relationship between the Dynkin label \boldsymbol{a} and the natural label $\boldsymbol{\lambda}$ has a number of important aspects. Firstly, the only constraints on the components of λ are those defined by the condition that each component of \boldsymbol{a} is a non-negative integer. These conditions ensure that the components of $\boldsymbol{\lambda}$ are either integers or half odd integers. Secondly, the natural label for each elementary representation $\boldsymbol{\lambda}^{(i)}$ of the simple Lie algebra g may be found by setting $a_{i}=1$ and $a_{i}=0$ for $j \neq i$. These elementary representations are thus labelled by the columns of the matrix expressing λ in terms of a.

Thirdly, it is known (Dynkin 1975b, p 356) that half the sum of the positive roots of a semi-simple Lie algebra of rank k, denoted by

$$
\begin{equation*}
\boldsymbol{R}=\frac{1}{2} \sum_{r>0} r, \tag{4.5}
\end{equation*}
$$

is the sum of the highest weights of the k elementary representations $\boldsymbol{\lambda}^{(i)}$ of g. Defining

$$
\begin{equation*}
\delta=\boldsymbol{R}-\sum_{p \in \Gamma_{g}} R_{m} p, \tag{4.6}
\end{equation*}
$$

Table 10.

Exceptional algebra g	Classical subalgebra h	Relationship between the Dynkin lab	natural label $\boldsymbol{\lambda}$	Half the sum of positive roots $\boldsymbol{\delta}$
G_{2}	A_{2}	$\begin{aligned} & a_{1}=\lambda_{2} \\ & a_{2}=\lambda_{1}-2 \lambda_{2} \end{aligned}$	$\begin{aligned} & \lambda_{2}=2 a_{1}+a_{2} \\ & \lambda_{2}=a_{1} \end{aligned}$	$\begin{aligned} & \delta_{1}=3 \\ & \delta_{2}=1 \end{aligned}$
F_{4}	B_{4}	$\begin{aligned} & a_{1}=\lambda_{2}-\lambda_{3} \\ & a_{2}=\lambda_{3}-\lambda_{4} \\ & a_{3}=2 \lambda_{4} \\ & a_{4}=\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4} \end{aligned}$	$\begin{aligned} & \lambda_{1}=a_{1}+2 a_{2}+{ }_{2}^{3} a_{3}+a_{4} \\ & \lambda_{2}=a_{1}+a_{2}+\frac{1}{2} a_{3} \\ & \lambda_{3}=r a_{2}+{ }_{2}^{1} a_{3} \\ & \lambda_{4}= \\ & \frac{1}{2} a_{3} \end{aligned}$	$\begin{aligned} & \delta_{1}=\frac{11}{2} \\ & \delta_{2}=\frac{5}{2} \\ & \delta_{3}=\frac{3}{2} \\ & \delta_{4}=\frac{1}{2} \end{aligned}$
F_{4}	$\mathrm{C}_{1}+\mathrm{C}_{3}$	$\begin{aligned} & a_{1}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}\right) \\ & a_{2}=\lambda_{4} \\ & a_{3}=\lambda_{3}-\lambda_{4} \\ & a_{4}=\lambda_{2}-\lambda_{3} \end{aligned}$	$\begin{array}{ll} \lambda_{1}= & 2 a_{1}+3 a_{2}+2 a_{3}+a_{4} \\ \lambda_{2} & = \\ \lambda_{2}+a_{3}+a_{4} \\ \lambda_{3} & a_{2}+a_{3} \\ \lambda_{4}= & a_{2} \end{array}$	$\begin{aligned} & \delta_{1}=8 \\ & \delta_{2}=3 \\ & \delta_{3}=2 \\ & \delta_{4}=1 \end{aligned}$
E_{6}	$\mathrm{A}_{1}+\mathrm{A}_{5}$	$\begin{aligned} & a_{1}=\lambda_{2}-\lambda_{3} \\ & a_{2}=\lambda_{3}-\lambda_{4} \\ & a_{3}=\lambda_{4}-\lambda_{5} \\ & a_{4}=\lambda_{5}-\lambda_{6} \\ & a_{5}=\lambda_{6} \\ & a_{7}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}+\lambda_{5}+\lambda_{6}\right) \end{aligned}$	$\begin{array}{lr} \lambda_{1}=a_{1}+2 a_{2}+3 a_{3}+2 a_{4}+a_{5}+2 a_{6} \\ \lambda_{2}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5} \\ \lambda_{3}= & a_{2}+a_{3}+a_{4}+a_{5} \\ \lambda_{4}= & a_{3}+a_{4}+a_{5} \\ \lambda_{5}= & a_{4}+a_{5} \\ \lambda_{6}= & a_{5} \end{array}$	$\begin{aligned} & \delta_{1}=11 \\ & \delta_{2}=5 \\ & \delta_{3}=4 \\ & \delta_{4}=3 \\ & \delta_{5}=2 \\ & \delta_{6}=1 \end{aligned}$
E_{6}	$\mathrm{A}_{2} \dot{+} \mathrm{A}_{2}+\mathrm{A}_{2}$	$\begin{aligned} & a_{1}=\lambda_{3}-\lambda_{4} \\ & a_{2}=\lambda_{4} \\ & a_{3}=\frac{1}{3}\left(\lambda_{1}-2 \lambda_{2}-\lambda_{3}-\lambda_{4}-2 \lambda_{5}+\lambda_{6}\right) \\ & a_{4}=\lambda_{5}-\lambda_{6} \\ & a_{5}=\lambda_{6} \\ & a_{6}=\lambda_{2} \end{aligned}$	$\begin{aligned} & \lambda_{1}=a_{1}+2 a_{2}+3 a_{3}+2 a_{4}+a_{5}+2 a_{6} \\ & \lambda_{2}= \\ & \lambda_{3}=a_{1}+a_{2} \\ & \lambda_{4}= \\ & \lambda_{5}= \\ & \lambda_{6} \\ & \lambda_{6}= \end{aligned}$	$\begin{aligned} & \delta_{1}=11 \\ & \delta_{2}=1 \\ & \delta_{3}=2 \\ & \delta_{4}=1 \\ & \delta_{5}=2 \\ & \delta_{6}=1 \end{aligned}$
E_{7}	A_{7}	$\begin{aligned} & a_{1}=\lambda_{7} \\ & a_{2}=\lambda_{6}-\lambda_{7} \\ & a_{3}=\lambda_{5}-\lambda_{6} \\ & a_{4}=\lambda_{4}-\lambda_{5} \\ & a_{5}=\lambda_{3}-\lambda_{4} \\ & a_{6}=\lambda_{2}-\lambda_{3} \\ & a_{7}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}+\lambda_{6}+\lambda_{7}\right) \end{aligned}$	$\begin{aligned} & \lambda_{1}=2 a_{1}+3 a_{2}+4 a_{3}+3 a_{4}+2 a_{5}+a_{6}+2 a_{7} \\ & \lambda_{2}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\ & \lambda_{3}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5} \\ & \lambda_{4}=a_{1}+a_{2}+a_{3}+a_{4} \\ & \lambda_{5}=a_{1}+a_{2}+a_{3} \\ & \lambda_{6}=a_{1}+a_{2} \\ & \lambda_{7}=a_{1} \end{aligned}$	$\begin{aligned} & \delta_{1}=17 \\ & \delta_{2}=6 \\ & \delta_{3}=5 \\ & \delta_{4}=4 \\ & \delta_{5}=3 \\ & \delta_{6}=2 \\ & \delta_{7}=1 \end{aligned}$

Table 10 -continued

Table 11.

Exceptional algebra g	Classical subalgebra h	Relationship between the Dynkin label \boldsymbol{a} and the natural label $\boldsymbol{\lambda}$		Half the sum of positive roots \boldsymbol{A}
E_{6}	$\mathrm{A}_{5}+\mathrm{A}_{1}$	$a_{1}=\lambda_{2}-\lambda_{3}$	$\lambda_{1}=a_{1}+2 a_{2}+3 a_{3}+2 a_{4}+a_{5}+2 a_{6}$	$\delta_{1}=11$
		$a_{2}=\lambda_{3}-\lambda_{4}$	$\lambda_{2}=a_{1}+a_{2}+a_{3}+a_{6}$	$\delta_{2}=4$
		$a_{3}=\lambda_{4}-\lambda_{5}$	$\lambda_{3}=a_{2}+a_{3}+a_{6}$	$\delta_{3}=3$
		$a_{4}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}+\lambda_{5}-\lambda_{6}\right)$	$\lambda_{4}=\quad a_{3}+a_{6}$	$\delta_{4}=2$
		$a_{5}=\lambda_{6}$	$\lambda_{5}=\quad a_{6}$	$\delta_{5}=1$
		$a_{6}=\lambda_{5}$	$\lambda_{6}=\quad a_{5}$	$\delta_{6}=1$
E_{7}	$\mathrm{D}_{6}+\mathrm{A}_{1}$	$a_{1}=\lambda_{2}-\lambda_{3}$	$\lambda_{1}=a_{1}+2 a_{2}+3 a_{3}+\frac{5}{2} a_{4}+2 a_{5}+a_{6}+\frac{3}{2} a_{7}$	$\delta_{1}=13$
		$a_{2}=\lambda_{3}-\lambda_{4}$	$\lambda_{2}=a_{1}+a_{2}+a_{3}+\frac{1}{2} a_{4} \quad+\frac{1}{2} a_{7}$	$\delta_{2}=4$
		$a_{3}=\lambda_{4}-\lambda_{5}$	$\lambda_{3}=a_{2}+a_{3}+\frac{1}{2} a_{4} \quad+\frac{1}{2} a_{7}$	$\delta_{3}=3$
		$a_{4}=\lambda_{5}-\lambda_{6}$	$\lambda_{4}=\quad a_{3}+\frac{1}{2} a_{4} \quad+\frac{1}{2} a_{7}$	$\delta_{4}=2$
		$a_{5}=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}+\lambda_{6}-\lambda_{7}\right)$	$\lambda_{5}=\quad+\frac{1}{2} a_{4} \quad+\frac{1}{2} a_{7}$	$\delta_{5}=1$
		$a_{6}=\lambda_{7}$	$\lambda_{6}=\quad-\frac{1}{2} a_{4} \quad+\frac{1}{2} a_{7}$	$\delta_{6}=0$
		$a_{7}=\lambda_{5}+\lambda_{6}$	$\lambda_{7}=\quad a_{6}$	$\delta_{7}=1$
E_{7}	$\mathrm{A}_{5} \dot{+} \mathrm{A}_{2}$	$a_{1}=\lambda_{5}$	$\lambda_{1}=2 a_{1}+3 a_{2}+4 a_{3}+3 a_{4}+2 a_{5}+a_{6}+2 a_{7}$	$\delta_{1}=17$
		$a_{2}=\lambda_{4}-\lambda_{5}$	$\lambda_{2}=a_{1}+a_{2}+a_{3}+a_{7}$	$\delta_{2}=4$
		$a_{3}=\lambda_{3}-\lambda_{4}$	$\lambda_{3}=a_{1}+a_{2}+a_{3}$	$\delta_{3}=3$
		$a_{4}=\frac{1}{3}\left(\lambda_{1}-2 \lambda_{2}-2 \lambda_{3}+\lambda_{4}+\lambda_{5}-\lambda_{6}-\lambda_{7}\right)$	$\lambda_{4}=a_{1}+a_{2}$	$\delta_{4}=2$
		$a_{5}=\lambda_{7}$	$\lambda_{5}=a_{1}$	$\delta_{5}=1$
		$a_{6}=\lambda_{6}-\lambda_{7}$	$\lambda_{6}=\quad a_{5}+a_{6}$	$\delta_{6}=2$
		$a_{7}=\lambda_{2}-\lambda_{3}$	$\lambda_{7}=\quad a_{5}$	$\delta_{7}=1$

Table 11 -continued

this implies that

$$
\begin{equation*}
\boldsymbol{\delta}=\sum_{i=1}^{k} \boldsymbol{\lambda}^{(i)}, \tag{4.7}
\end{equation*}
$$

yielding the results given in the final columns of tables 9,10 and 11.
Finally, the tables may be used to write down the modification rules and equivalence relations appropriate to the characters of irreducible representations of semi-simple Lie groups. They are a consequence of the character formula due to Weyl (1926), which may be written in the form

$$
\begin{equation*}
\chi^{\Lambda}(\boldsymbol{\phi})=\frac{\Sigma_{S \in \mathrm{~W}_{G}} \eta_{S} \mathrm{e}^{\mathrm{i} S(\boldsymbol{R}+\boldsymbol{M}) \cdot \phi}}{\Sigma_{S \in \mathrm{~W}_{G}} \eta_{S} \mathrm{e}^{\mathrm{i} S R \cdot \phi}} \tag{4.8}
\end{equation*}
$$

where $\boldsymbol{\phi}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{d}\right)$ is a set of real class parameters, \boldsymbol{M} is the highest weight vector of the irreducible representation $\boldsymbol{\lambda}$ of the Lie group $\boldsymbol{G}, \boldsymbol{R}$ is half the sum of the positive roots of the corresponding Lie algebra g, S is an element of the Weyl symmetry group W_{G} of G and η_{S} is the parity of S, that is $\eta_{S}=+1$ or -1 according to whether the number of Weyl reflections generating S is even or odd. Associated with each root r of the Lie algebra g there exists a Weyl reflection S_{r} in the hyperplane perpendicular to r. This reflection takes place in the Euclidean space W, and is defined by

$$
\begin{equation*}
S_{r}: v \rightarrow v-\frac{2(v . r) r}{(r \cdot r)} \tag{4.9}
\end{equation*}
$$

for any vector v in W. It should be noticed that by virtue of (2.1) each vector p of V^{\perp} is left invariant by such reflections.

It follows from (4.8) that if

$$
\begin{equation*}
\boldsymbol{\lambda}=\boldsymbol{M}-\sum_{p \in \Gamma_{\mathrm{z}}} M_{m} \boldsymbol{p} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{\mu}=\boldsymbol{N}-\sum_{p \in \Gamma_{\mathrm{g}}} \boldsymbol{N}_{m} \boldsymbol{p} \tag{4.11}
\end{equation*}
$$

with

$$
\begin{equation*}
M=S(\boldsymbol{R}+\boldsymbol{N})-\boldsymbol{R}, \tag{4.12}
\end{equation*}
$$

then

$$
\chi^{\boldsymbol{\lambda}}(\boldsymbol{\phi})=\eta_{S} \chi^{\boldsymbol{\mu}}(\boldsymbol{\phi}) .
$$

This relationship between the characters of $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$ defines an equivalence relation between irreducible representations. The rule by which $\boldsymbol{\lambda}$ is obtained from $\boldsymbol{\mu}$ using (4.9)-(4.12) and (2.1) is known as a modification rule. Its use is to provide a means whereby a non-standard, inadmissible label $\boldsymbol{\mu}$ may be replaced by a standard label $\boldsymbol{\lambda}$ satisfying the constraints imposed in tables 9,10 and 11 by the requirement that the components of \boldsymbol{a} are all non-negative integers. Such non-standard labels $\boldsymbol{\mu}$ arise, for example, in the evaluation of Kronecker products of irreducible representations in accordance with the method of Racah (1964) and Speiser (1964). In such a context there always exists some S in W_{G} such that for each non-standard label μ a standard label $\boldsymbol{\lambda}$ exists, unless

$$
\chi^{\mu}(\boldsymbol{\phi})=0 .
$$

This condition only arises if there exists a reflection S_{r} such that

$$
\chi^{\mu}(\boldsymbol{\phi})=\eta_{S_{r}} \chi^{\mu}(\boldsymbol{\phi})=-\chi^{\mu}(\boldsymbol{\phi})
$$

The complete set of Weyl reflections, and thus the whole Weyl group, may be generated by means of the reflections in the hyperplanes perpendicular to the simple roots. It is thus straightforward, using the tables presented earlier, to derive the modification rules defined by

$$
\chi^{\lambda}(\boldsymbol{\phi})=\eta_{s_{r}} \chi^{\mu}(\boldsymbol{\phi})=-\chi^{\mu}(\boldsymbol{\phi})
$$

for each simple root r. These rules are displayed in tables 12 and 13 for each of the labelling schemes of tables 9 and 10 . Similar results may easily be established for the schemes of table 11.

5. Conclusion

The tables presented here provide a systematic account of the natural labelling schemes for both the simple root systems and the irreducible representations of the exceptional Lie algebras. These schemes are based on the relationship between these algebras and classical semi-simple subalgebras of the same rank. In almost all cases a labelling may be chosen which differs from a classical labelling in just one particular. This is accomplished through the use of the schemes based on singly supplemented Dynkin diagrams. Furthermore, an ordering of basis vectors in the Euclidean space W in which the root and weight spaces are embedded has been chosen so that in the natural

Table 12.

Algebra g	μ	λ where $\chi^{\boldsymbol{\lambda}}(\boldsymbol{\phi})=\eta_{\boldsymbol{r r}} \chi^{\mu}(\phi)=-\chi^{\mu}(\phi)$ with $r \in \Pi_{g}$			
A_{k}	μ_{1}	$\mu_{2}-1$	μ_{1}	μ_{1}	$\mu_{1}-\mu_{k}-1$
	μ_{2}	$\mu_{1}+1$	$\mu_{3}-1$	μ_{2}	$\mu_{2}-\mu_{k}-1$
	μ_{3}	μ_{3}	$\mu_{2}+1$	μ_{3}	$\mu_{3}-\mu_{k}-1$
	:	:	:	:	:
	μ_{k-1}	μ_{k-1}	μ_{k-1}	$\mu_{k}-1$	$\mu_{k-1}-\mu_{k}-1$
	μ_{k}	μ_{k}	μ_{k}	$\mu_{k-1}+1$	$-\mu_{k}-2$
B_{4}	μ_{1}				μ_{1}
	μ_{2}				μ_{2}
	:				:
	μ_{k-1}	\cdots	"	"	μ_{k-1}
	μ_{k}				$-\mu_{k}-1$
C_{k}	μ_{1}				μ_{1}
	μ_{2} \vdots	'"	"	"	μ_{2}
	μ_{k-1}				μ_{k-1}
	μ_{k}				$-\mu_{k}-2$
D_{k}	μ_{1}				μ_{1}
	μ_{2}	"	"	"	μ_{2}
	μ_{k-1}				$-\mu_{k}-1$
	μ_{k}				$-\mu_{k-1}-1$

Table 13.

Exceptional algebra g	Classical subalgebra h	μ	λ where $\chi^{\lambda}(\phi)=\eta_{S_{r}} \chi^{\mu}(\phi)=-\chi^{\mu}(\phi)$ with $r \in \Pi_{g}$						
G_{2}	A_{2}	μ_{1}	${ }_{-\mu_{2}-2}^{\mu_{1}-\mu_{2}-1}{ }^{\mu_{1}}{ }_{\mu_{2}+\epsilon}$						
		μ_{2}							$\epsilon=\mu_{1}-2 \mu_{2}+1$
F_{4}	B_{4}	μ_{1}	μ_{1}	μ_{1}	μ_{1}	$\mu_{1}-\boldsymbol{\epsilon}$			
		μ_{2}	$\mu_{3}-1$	μ_{2}	μ_{2}	$\mu_{2}+\boldsymbol{\epsilon}$			
		μ_{3}	$\mu_{2}+1$	$\mu_{4}-1$	μ_{3}	$\mu_{3}+\epsilon$			$\epsilon=\frac{1}{2}\left(\mu_{1}-\mu_{2}-\mu_{3}-\mu_{4}+1\right)$
		μ_{4}	μ_{4}	$\mu_{3}+1$	$-\mu_{4}-1$	$\mu_{4}+\epsilon$			
F_{4}	$\mathrm{C}_{1} \dot{+} \mathrm{C}_{3}$	μ_{1}	μ_{1}	μ_{1}	μ_{1}	$\mu_{1}-\epsilon$			
		μ_{2}	$\mu_{3}-1$	μ_{2}	μ_{2}	$\mu_{2}+\boldsymbol{\epsilon}$			
		μ_{3}	$\mu_{2}+1$	$\mu_{4}-1$	μ_{3}	$\mu_{3}+\epsilon$			$\boldsymbol{\epsilon}=\frac{1}{2}\left(\mu_{1}-\mu_{2}-\mu_{3}-\mu_{4}+2\right)$
		μ_{4}	μ_{4}	$\mu_{3}+1$	$-\mu_{4}-2$	$\mu_{4}+\boldsymbol{\epsilon}$			
E_{6}	$\mathrm{A}_{1}+\mathrm{A}_{5}$	μ_{1}	μ_{1}	μ_{1}	μ_{1}	μ_{1}	μ_{1}	$\mu_{1}-\epsilon$	
		μ_{2}	$\mu_{3}-1$	μ_{2}	μ_{2}	μ_{2}	$\mu_{2}-\mu_{6}-1$	$\mu_{2}+\epsilon$	
		μ_{3}	$\mu_{2}+1$	$\mu_{4}-1$	μ_{3}	μ_{3}	$\mu_{3}-\mu_{6}-1$	$\mu_{3}+\epsilon$	$\epsilon=\frac{1}{2}\left(\mu_{1}-\mu_{2}-\mu_{3}-\mu_{4}+\mu_{5}+\mu_{6}+2\right)$
		μ_{4}	μ_{4}	$\mu_{3}+1$	$\mu_{5}-1$	μ_{4}	$\mu_{4}-\mu_{6}-1$	$\mu_{4}+\epsilon$	
		μ_{5}	μ_{5}	μ_{5}	$\mu_{4}+1$	$\mu_{6}-1$	$\mu_{5}-\mu_{6}-1$	μ_{5}	
		μ_{6}	μ_{6}	μ_{6}	μ_{6}	$\mu_{5}+1$	$-\mu_{6}-2$	μ_{6}	
E_{6}	$\mathrm{A}_{2}+\mathrm{A}_{2} \ddagger \mathrm{~A}_{2}$		$\mu_{1}-\mu_{2}-1$	μ_{1}	μ_{1}	μ_{1}	μ_{1}	μ_{1}	
		μ_{2}	$-\mu_{2}-2$	μ_{2}	μ_{2}	μ_{2}	μ_{2}	$\mu_{2}+\epsilon$	
		μ_{3}	μ_{4}	$\mu_{4}-1$	$\mu_{3}-\mu_{4}-1$	μ_{3}	μ_{3}	$\mu_{3}+\epsilon$	$\epsilon=\frac{1}{3}\left(\mu_{1}-2 \mu_{2}-\mu_{3}-\mu_{4}\right.$
		μ_{4}	μ_{3}	$\mu_{3}+1$	$-\mu_{4}-2$	μ_{4}	μ_{4}	$\mu_{4}+\epsilon$	$\left.-2 \mu_{5}+\mu_{6}+3\right)$
		$\mu_{\text {S }}$	μ_{5}	μ_{5}	μ_{5}	$\mu_{6}-1$	$\mu_{5}-\mu_{6}-1$	$\mu_{5}+\epsilon$	
		μ_{6}	μ_{6}	μ_{6}	μ_{6}	$\mu_{5}+1$	- $\mu_{6}-2$	μ_{6}	
E_{7}	A_{7}	μ_{1}	μ_{1}	μ_{1}	\ldots	μ_{1}	$\mu_{1}-\mu_{7}-1$	μ_{1}	
		μ_{2}	$\mu_{3}-1$	μ_{2}		μ_{2}	$\mu_{2}-\mu_{7}-1$	$\mu_{2}+\epsilon$	
		μ_{3}	$\mu_{2}+1$	$\mu_{4}-1$		μ_{3}	$\mu_{3}-\mu_{7}-1$	$\mu_{3}+\epsilon$	
		μ_{4}	μ_{4}	$\mu_{3}+1$		μ_{4}	$\mu_{4}-\mu_{7}-1$	$\mu_{4}+\epsilon$	$\boldsymbol{\epsilon}=\frac{1}{2}\left(\mu_{1}-\mu_{2}-\mu_{3}-\mu_{4}-\mu_{5}\right.$
		μ_{5}	$\mu_{\text {s }}$	μ_{5}		μ_{5}	$\mu_{5}-\mu_{7}-1$	$\mu_{5}+\epsilon$	$\left.+\mu_{6}+\mu_{7}+2\right)$
		μ_{6}	μ_{6}	μ_{6}		$\mu_{7}-1$	$\mu_{6}-\mu_{7}-1$	μ_{6}	
		μ_{7}	μ_{7}	μ_{7}		$\mu_{6}+1$	$-\mu_{7}-2$	μ_{7}	

Table 13 -continued

E_{8}	$\mathrm{A}_{7} \dot{+} \mathrm{A}_{1}$	μ_{1}	μ_{1}	\ldots	μ_{1}	$\mu_{1}-\mu_{7}-1$					
		μ_{2}	$\mu_{3}-1$		μ_{2}	$\mu_{2}-\mu_{7}-1$	$\mu_{2}-\epsilon$				
		μ_{3}	$\mu_{2}+1$		μ_{3}	$\mu_{3}-\mu_{7}-1$	$\mu_{3}-\epsilon$				
		μ_{4}	μ_{4}		μ_{4}	$\mu_{4}-\mu_{7}-1$	μ_{4}				$\epsilon=\frac{1}{4}\left(\mu_{1}-3 \mu_{2}-3 \mu_{3}+\mu_{4}+\mu_{5}+\mu_{6}\right.$
		μ_{5}	μ_{S}		μ_{5}	$\mu_{5}-\mu_{7}-1$	μ_{5}				$\left.+\mu_{7}-2 \mu_{8}+4\right)$
		μ_{6}	μ_{6}		$\mu_{7}-1$	$\mu_{6}-\mu_{7}-1$	μ_{6}				
		μ_{7}	μ_{7}		$\mu_{6}+1$	$-\mu_{7}-2$	μ_{7}				
		μ_{8}	μ_{8}		μ_{8}	μ_{8}	$\mu_{8}-\boldsymbol{\epsilon}$				
E_{8}	$\mathrm{A}_{4} \dot{+} \mathrm{A}_{4}$	μ_{1}	μ_{1}	μ_{1}	$\mu_{1}-\mu_{4}-1$	$1 \mu_{1}$	μ_{1}	μ_{1}	μ_{1}	μ_{1}	
		μ_{2}	$\mu_{3}-1$	μ_{2}	$\mu_{2}-\mu_{4}-1$	$1 \mu_{2}$	μ_{2}	μ_{2}	μ_{2}	$\mu_{2}-\epsilon$	
		μ_{3}	$\mu_{2}+1$	$\mu_{4}-1$	$\mu_{3}-\mu_{4}-1$	$1 \mu_{3}$	μ_{3}	μ_{3}	μ_{3}	μ_{3}	
		μ_{4}	μ_{4}	$\mu_{3}+1$	$-\mu_{4}-2$	μ_{4}	μ_{4}	μ_{4}	μ_{4}	μ_{4}	$\epsilon={ }_{5}^{1}\left(\mu_{1}-4 \mu_{2}+\mu_{3}+\mu_{4}-2 \mu_{5}-2 \mu_{6}\right.$
		μ_{5}	μ_{5}	μ_{5}	μ_{5}	$\mu_{6}-1$	μ_{5}	μ_{5}	$\mu_{5}-\mu_{8}-1$	$\mu_{5}-\epsilon$	$\left.-2 \mu_{7}+3 \mu_{8}+5\right)$
		μ_{6}	μ_{6}	μ_{6}	μ_{6}	$\mu_{5}+1$	$\mu_{7}-1$	μ_{6}	$\mu_{6}-\mu_{8}-1$	$\mu_{6}-\epsilon$	
		μ_{7}	μ_{7}	μ_{7}	μ_{7}	μ_{7}	$\mu_{6}+1$	$\mu_{8}-1$	$\mu_{7}-\mu_{8}-1$	$\mu_{7}-\epsilon$	
		μ_{8}	μ_{8}	μ_{8}	μ_{8}	μ_{8}	μ_{8}	$\mu_{7}+1$	$-\mu_{8}-2$	μ_{8}	
E_{8}	$\mathrm{A}_{5}+\mathrm{A}_{2}+\mathrm{A}_{1}$	μ_{1}	μ_{1}	\ldots	μ_{1}	$\mu_{1}-\mu_{5}-1$	μ_{1}	μ_{1}	μ_{1}	μ_{1}	
		μ_{2}	$\mu_{3}-1$		μ_{2}	$\mu_{2}-\mu_{5}-1$	μ_{2}	μ_{2}	μ_{2}	$\mu_{2}-\epsilon$	
		μ_{3}	$\mu_{2}+1$		μ_{3}	$\mu_{3}-\mu_{5}-1$	μ_{3}	μ_{3}	μ_{3}		
		μ_{4}	μ_{4}		$\mu_{5}-1$	$\mu_{4}-\mu_{5}-1$	μ_{4}	μ_{4}	μ_{4}	μ_{4}	$\epsilon=\frac{1}{6}\left(\mu_{1}-5 \mu_{2}+\mu_{3}+\mu_{4}+\mu_{5}-4 \mu_{6}\right.$
		μ_{5}	μ_{5}		$\mu_{4}+1$	$-\mu_{5}-2$	μ_{5}	μ_{5}	μ_{5}	μ_{5}	$\left.+2 \mu_{7}-3 \mu_{8}+6\right)$
		μ_{6}	μ_{6}		μ_{6}	μ_{6}	$\mu_{7}-1$	$\mu_{6}-\mu_{7}-1$	μ_{6}	$\mu_{6}-\epsilon$	
		μ_{7}	μ_{7}		μ_{7}	μ_{7}	$\mu_{6}+1$	- $\mu_{7}-2$	μ_{7}	μ_{7}	
		μ_{8}	μ_{8}		$\mu_{\text {B }}$	μ_{8}	μ_{8}	μ_{8}	$-\mu_{8}-2$	$\mu_{8}-\boldsymbol{\epsilon}$	
E_{8}	$\mathrm{A}_{2} \dot{+} \mathrm{A}_{2} \dot{+}$	μ_{1}	$\mu_{1}-\mu_{2}-1$	$1 \mu_{1}$	μ_{1}	μ_{1}	μ_{1}	μ_{1}	μ_{1}	μ_{1}	
	$\mathrm{A}_{2}+\mathrm{A}_{2}$	μ_{2}	$-\mu_{2}-2$	μ_{2}	μ_{2}	μ_{2}	μ_{2}	μ_{2}	$\mu_{2}-\epsilon_{1}$	μ_{2}	
		μ_{3}	μ_{3}	$\mu_{3}-\mu_{4}-1$	μ_{3}	μ_{3}	μ_{3}	μ_{3}	$\mu_{3}-\epsilon_{1}$	μ_{3}	$\epsilon_{1}=\frac{1}{3}\left(\mu_{1}-2 \mu_{2}-2 \mu_{3}+\mu_{4}\right.$
		μ_{4}	μ_{4}	$-\mu_{4}-2$	μ_{4}	μ_{4}	μ_{4}	μ_{4}	μ_{4}	$\mu_{4}-\epsilon_{2}$	$\left.-\mu_{7}-\mu_{8}+3\right)$
		μ_{5}	μ_{S}	μ_{5}	$\mu_{6}-1$	$\mu_{5}-\mu_{6}-1$	μ_{5}	μ_{5}	μ_{5}	$\mu_{5}-\epsilon_{2}$	$\epsilon_{2}={ }_{3}^{1}\left(\mu_{3}-2 \mu_{4}-\mu_{5}-\mu_{6}\right.$
		μ_{6}	μ_{6}	μ_{6}	$\mu_{5}+1$	$-\mu_{6}-2$	μ_{6}	μ_{6}	μ_{6}	$\mu_{6}-\epsilon_{2}$	$\left.-2 \mu_{7}+\mu_{8}+3\right)$
		μ_{7}	μ_{7}	μ_{7}	μ_{7}	μ_{7}	$\mu_{8}-1$	$\mu_{7}-\mu_{8}-1$	$\mu_{7}-\epsilon_{1}$	$\mu_{7}-\epsilon_{2}$	
		μ_{8}	μ_{8}	μ_{8}	μ_{8}	μ_{8}	$\mu_{7}+1$	$-\mu_{8}-2$	$\mu_{8}-\epsilon_{1}$	μ_{8}	

Table 14.

Simple root systems of isomorphic Lie algebras

$$
\begin{aligned}
& \mathrm{A}_{1} \approx \mathrm{~B}_{1} \approx \mathrm{C}_{1} \\
& \circ \quad e_{1}-e_{2} \quad \bullet \quad e_{1}^{\prime} \quad \circ 2 e_{1}^{\prime \prime} \\
& e_{1}=\frac{1}{2}\left(e_{1}^{\prime}+e_{2}^{\prime}\right)=e_{1}^{\prime \prime}+e_{2}^{\prime \prime} \\
& e_{2}=\frac{1}{2}\left(-e_{1}^{\prime}+e_{2}^{\prime}\right)=-e_{1}^{\prime \prime}+e_{2}^{\prime \prime}
\end{aligned}
$$

$$
\boldsymbol{e}_{1}^{\prime}=\boldsymbol{e}_{1}-\boldsymbol{e}_{2}=2 \boldsymbol{e}_{1}^{\prime \prime}
$$

$$
\boldsymbol{e}_{2}^{\prime}=\boldsymbol{e}_{1}+\boldsymbol{e}_{2}=2 \boldsymbol{e}_{2}^{\prime \prime}
$$

$\mathrm{B}_{2} \approx \mathrm{C}_{2}$

$1 \begin{aligned} & e_{1}-e_{2} \\ & e_{2}\end{aligned}$

- $\begin{aligned} & e_{1}^{\prime}-e_{2}^{\prime} \\ & 2 e_{2}^{\prime}\end{aligned}$
$e_{1}=e_{1}^{\prime}+e_{2}^{\prime}$
$\boldsymbol{e}_{1}^{\prime}=\frac{1}{2}\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right)$
$\boldsymbol{e}_{2}=\boldsymbol{e}_{1}^{\prime}-\boldsymbol{e}_{2}^{\prime}$
$e_{2}^{\prime}=\frac{1}{2}\left(e_{1}-e_{2}\right)$

$$
\begin{aligned}
& \mathrm{A}_{1}+\mathrm{A}_{1} \approx \mathrm{D}_{2} \\
& \\
0 & e_{1}-e_{2} \\
0 & e_{3}-e_{4}
\end{aligned} \begin{aligned}
& \\
& 0 \\
& e_{1}^{\prime}-e_{2}^{\prime} \\
& 0 \\
& e_{1}^{\prime}+e_{2}^{\prime}
\end{aligned}
$$

$\boldsymbol{e}_{1}=\frac{1}{2}\left(\boldsymbol{e}_{1}^{\prime}-\boldsymbol{e}_{2}^{\prime}+\boldsymbol{e}_{3}^{\prime}-\boldsymbol{e}_{4}^{\prime}\right)$

$$
e_{2}=\frac{1}{2}\left(-e_{1}^{\prime}+e_{2}^{\prime}+e_{3}^{\prime}-e_{4}^{\prime}\right)
$$

$$
e_{3}=\frac{1}{2}\left(e_{1}^{\prime}+e_{2}^{\prime}+e_{3}^{\prime}+e_{4}^{\prime}\right)
$$

$$
\boldsymbol{e}_{4}=\frac{1}{2}\left(-\boldsymbol{e}_{1}^{\prime}-\boldsymbol{e}_{2}^{\prime}+\boldsymbol{e}_{3}^{\prime}+\boldsymbol{e}_{4}^{\prime}\right)
$$

$$
\begin{aligned}
& \boldsymbol{e}_{1}^{\prime}=\frac{1}{2}\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{2}+\boldsymbol{e}_{3}-\boldsymbol{e}_{4}\right) \\
& \boldsymbol{e}_{2}^{\prime}=\frac{1}{2}\left(-\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}-\boldsymbol{e}_{4}\right) \\
& \boldsymbol{e}_{3}^{\prime}=\frac{1}{2}\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}+\boldsymbol{e}_{4}\right) \\
& \boldsymbol{e}_{4}^{\prime}=\frac{1}{2}\left(-\boldsymbol{e}_{1}-\boldsymbol{e}_{2}+\boldsymbol{e}_{3}+\boldsymbol{e}_{4}\right)
\end{aligned}
$$

labelling schemes the last $(d-k)$ components of the irreducible representation label $\boldsymbol{\lambda}$ vanish, whilst for the exceptional algebra g only the first component λ_{1} of $\boldsymbol{\lambda}$ differs in its range of allowed value from the corresponding labels of the irreducible representations of the classical subalgebra h. Moreover, the requirement for a sound labelling scheme, emphasised by Wybourne and Bowick (1977), that on restriction from g to h

$$
\begin{equation*}
\lambda \rightarrow \lambda+\ldots, \tag{5.1}
\end{equation*}
$$

is automatically satisfied.
Further schemes may be devised if changes of scale are tolerated which would violate (5.1) unless scale changes are incorporated into a new definition of $\boldsymbol{\lambda}$ which would replace (4.3). For example, in the case of F_{4} a natural scheme has been based

$$
\begin{aligned}
& \mathrm{A}_{3} \approx \mathrm{D}_{3} \\
& \left\{\begin{array}{l}
e_{1}-e_{2} \\
e_{2}-e_{3} \\
e_{3}-e_{4}
\end{array} \quad e_{1}^{\prime}-e_{2}^{\prime} \ll e_{2}^{\prime}+e_{3}^{\prime}\right. \\
& \boldsymbol{e}_{1}=\frac{1}{2}\left(\boldsymbol{e}_{1}^{\prime}+\boldsymbol{e}_{2}^{\prime}-\boldsymbol{e}_{3}^{\prime}+\boldsymbol{e}_{4}^{\prime}\right) \\
& e_{1}^{\prime}=\frac{1}{2}\left(e_{1}+e_{2}-e_{3}-e_{4}\right) \\
& e_{2}=\frac{1}{2}\left(e_{1}^{\prime}-e_{2}^{\prime}+e_{3}^{\prime}+e_{4}^{\prime}\right) \\
& \boldsymbol{e}_{2}^{\prime}=\frac{1}{2}\left(\boldsymbol{e}_{1}-\boldsymbol{e}_{2}+\boldsymbol{e}_{3}-e_{4}\right) \\
& e_{3}=\frac{1}{2}\left(-e_{1}^{\prime}+e_{2}^{\prime}+e_{3}^{\prime}+e_{4}^{\prime}\right) \\
& \boldsymbol{e}_{3}^{\prime}=\frac{1}{2}\left(-e_{1}+e_{2}+e_{3}-e_{4}\right) \\
& \boldsymbol{e}_{4}=\frac{1}{2}\left(-\boldsymbol{e}_{1}^{\prime}-\boldsymbol{e}_{2}^{\prime}-\boldsymbol{e}_{3}^{\prime}+\boldsymbol{e}_{4}^{\prime}\right) \\
& \boldsymbol{e}_{4}^{\prime}=\frac{1}{2}\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}+\boldsymbol{e}_{4}\right)
\end{aligned}
$$

here on the subalgebra $C_{1}+C_{3}$. No such scheme may be based on the isomorphic algebras $A_{1}+C_{3}$ or $B_{1}+C_{3}$. This is because the root spaces of A_{1}, B_{1} and C_{1} are distinguished by changes of scale. This is made clear in table 4 , along with similar distinctions involving the isomorphic pairs of algebras $B_{2} \approx C_{2}, D_{2} \approx A_{1}+A_{1}$ and $A_{3} \approx D_{3}$. The ratio of lengths of simple roots in A_{1}, B_{1} and C_{1} is $\sqrt{2: 1: 2}$ and in B_{2} and C_{2} is $\sqrt{2}: 2$. However, in the case of the pair D_{2} and $A_{1}+A_{1}$ and the pair A_{3} and D_{3} the ratios are $1: 1$, that is, there are no changes of scale involved. Thus in tables 7 and 8 natural labelling schemes may be devised based on D_{3} rather than A_{3}, and upon D_{2} rather than $A_{1}+A_{1}$. These are not given here, even though they do serve to illustrate very clearly the chains (3.4)-(3.7) by virtue of their dependence upon the well known embeddings

$$
\begin{align*}
& \mathrm{D}_{6} \supset \mathrm{D}_{3}+\mathrm{D}_{3}, \tag{5.2}\\
& \mathrm{D}_{8} \supset \mathrm{D}_{2}+\mathrm{D}_{6}, \tag{5.3}\\
& \mathrm{D}_{8} \supset \mathrm{D}_{3}+\mathrm{D}_{5} . \tag{5.4}
\end{align*}
$$

A final word is necessary regarding non-semi-simple subalgebras. The algebras E_{6} and E_{7} both possess maximal non-semi-simple subalgebras as given in table $12 a$ of Dynkin (1957a, p 151). They correspond to the embeddings

$$
\begin{align*}
& \mathrm{E}_{6} \supset \mathrm{D}_{1}+\mathrm{D}_{5}, \tag{5.5}\\
& \mathrm{E}_{7} \supset \mathrm{D}_{1}+\mathrm{E}_{6}, \tag{5.6}
\end{align*}
$$

where D_{1} is the one-dimensional Lie algebra, neither simple nor semi-simple, of the Lie group $\mathrm{SO}(2)$ which is isomorphic to $\mathrm{U}(1)$. These embeddings provide labelling schemes. In the case of E_{6} the labelling scheme corresponding to (5.5) is

which is not natural by virtue of the presence of the term in $\frac{1}{2} \sqrt{3} e_{1}$. This situation may be improved by embedding the one-dimensional root space, V, of $U(1)$ in a threedimensional space W. This yields the simple root system

which is essentially that given by Carter (1972, p 49). Although this is associated in an obvious way with the embedding (5.5), it should be stressed that it is not quite natural, since the natural label for the one and only positive root of D_{1} is simply \boldsymbol{e}_{1}. The use of (5.6) suffers from the same drawback.

A final word of warning is necessary regarding the relationship between the results presented here and those of Wyborne and Bowick (1977). The natural labels based on $\mathrm{G}_{2} \supset \mathrm{~A}_{2}, \mathrm{E}_{6} \supset \mathrm{~A}_{1}+\mathrm{A}_{5}, \mathrm{E}_{7} \supset \mathrm{~A}_{7}$ and $\mathrm{E}_{8} \supset \mathrm{~A}_{8}$ are not quite those of these authors. The
difference lies, in the case of the last two groups, in the fact that the natural labelling is based on a lexicographic ordering in W of highest roots and weights. This results in labels, λ, for representations of E_{7} and E_{8} which are the contragradient with respect to A_{7} and A_{8} of the labels, $\boldsymbol{\Lambda}$, used by Wybourne and Bowick, so that for E_{7}

$$
\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{7}\right)=\left(\Lambda_{1}, \Lambda_{1}-\Lambda_{7}, \Lambda_{1}-\Lambda_{6}, \ldots, \Lambda_{1}-\Lambda_{2}\right),
$$

whilst for E_{8}

$$
\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{8}\right)=\left(\Lambda_{1}, \Lambda_{1}-\Lambda_{8}, \Lambda_{1}-\Lambda_{7}, \ldots, \Lambda_{1}-\Lambda_{2}\right) .
$$

In the case of E_{6}, the distinction between their label $\left(m_{1} m_{2} m_{3} m_{4} m_{5}: m\right)$ and the natural label, $\boldsymbol{\lambda}$, is trivial: namely

$$
\lambda=\left(\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5} \lambda_{6}\right)=\left(m m_{1} m_{2} m_{3} m_{4} m_{5}\right)
$$

However, for G_{2} the natural label, $\boldsymbol{\lambda}$, is not that introduced first by Racah (1949) and used in the form $\left(u_{1}, u_{2}\right)$ with $u_{1} \geqslant u_{2} \geqslant 0$ by Wybourne and Bowick. The relationship between the labels is

$$
\lambda=\left(\lambda_{1}, \lambda_{2}\right)=\left(u_{1}+u_{2}, u_{2}\right)
$$

with $\lambda_{1} \geqslant 2 \lambda_{2} \geqslant 0$. The use of the natural label, λ, circumvents the statement made by Wybourne and Bowick (1977) regarding (5.1) that 'the situation is slightly different for G_{2} '. The important relation (5.1) does apply to the restriction from G_{2} to A_{2} if the natural labelling scheme is adopted.

Acknowledgments

One of us (RCK) is pleased to acknowledge the hospitality extended to him in the Mathematics Department of Auckland University where some of this work was carried out and to express his gratitude to the British Council for a Commonwealth Travel Fellowship.

References

Bourbaki N 1968 Éléments de Mathématique ch 4-6 (Paris: Hermann)
Cartan E 1894 Sur la Structure des Groupes de Transformation Finis et Continus (Paris: Nany)
Carter R W 1972 Simple Groups of Lie Type (London: Wiley-Interscience)
Dynkin E B 1957a Amer. Math. Soc. Transl. Ser. 26 111-244

- 1957b Amer. Math. Soc. Transl. Ser. 2 6245-378
- 1962 Amer. Math. Soc. Transl. Ser. 19 328-469

Gruber B and Samuel M T 1975 in Group Theory and its Applications vol III ed E M Loebl (New York: Academic Press) pp 95-141
King R C and Plunkett S P O 1976 J. Phys. A: Math. Gen. 9 863-97
Littlewood D E 1940 The Theory of Group Characters (London: Oxford University Press)
Murnaghan F D 1938 Theory of Group Representations (Baltimore: Johns Hopkins Press)

- 1958 The Orthogonal and Symplectic Groups A13 (Dublin: Institute for Advanced Studies)

Patera J and Sankoff D 1972 Branching Rules for Representations of Simple Lie Algebras CRM-167 (Montréal: Montréal University Press)
Racah G 1949 Phys. Rev. 76 1352-65
-_ 1964 in Group Theoretical Concepts and Methods in Elementary Particle Physics ed F Gursey (New York: Gordon and Breach) pp 1-36

Speiser D 1964 in Group Theoretical Concepts and Methods in Elementary Particle Physics ed F Gursey (New York: Gordon and Breach) pp 237-46
Wan Z-X 1975 Lie Algebras (Oxford: Pergamon Press)
Weyl H 1926 Math. Z. 24 377-95

- 1939 The Classical Groups (Princeton: Princeton University Press)

Wybourne B G 1970 Symmetry Principles and Atomic Spectroscopy (New York: Wiley-Interscience)
—— 1974 Classical Groups for Physicists (New York: Wiley-Interscience)
1979 Aust. J. Phys. 32 417-26
Wybourne B G and Bowick M J 1977 Aust. J. Phys. 30 259-86

[^0]: § Permanent address: Department of Mathematics, University of Southampton, Southampton, England

[^1]: E_{7}
 A_{7}

 E_{7}
 $\mathrm{A}_{1}+\mathrm{D}_{6} \quad \boldsymbol{e}_{1}+\boldsymbol{e}_{8}$

 E_{7}
 $\begin{aligned} \mathrm{A}_{2}+\mathrm{A}_{5} & \boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{9} \\ & e_{3}+\boldsymbol{e}_{4}+\ldots+\boldsymbol{e}_{8}\end{aligned}$

